The honey bee (Apis mellifera L.) is the most important managed pollinator species worldwide and plays a critical role in the pollination of a diverse range of economically important crops. This species is important to agriculture and historically has been used as a surrogate species for pollinators to evaluate the potential adverse effects for conventional, biological, and microbial pesticides, as well as for genetically engineered plants that produce pesticidal products. As part of the ecological risk assessment of MON 87411 maize, which expresses a double‐stranded RNA targeting the Snf7 ortholog (DvSnf7) in western corn rootworm (Diabrotica virgifera virgifera), dietary feeding studies with honey bee larvae and adults were conducted. Based on the mode of action of the DvSnf7 RNA in western corn rootworm, the present studies were designed to be of sufficient duration to evaluate the potential for adverse effects on larval survival and development through emergence and adult survival to a significant portion of the adult stage. Testing was conducted at concentrations of DvSnf7 RNA that greatly exceeded environmentally relevant exposure levels based on expression levels in maize pollen. No adverse effects were observed in either larval or adult honey bees at these high exposure levels, providing a large margin of safety between environmental exposure levels and no‐observed–adverse‐effect levels. Environ Toxicol Chem 2016;35:287–294. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.
The expanding use of RNA interference (RNAi) in agricultural biotechnology necessitates tools for characterizing and quantifying double-stranded RNA (dsRNA)-containing transcripts that are expressed in transgenic plants. We sought to detect and quantify such transcripts in transgenic maize lines engineered to control western corn rootworm (Diabrotica virgifera virgifera LeConte) via overexpression of an inverted repeat sequence bearing a portion of the putative corn rootworm orthologue of yeast Snf7 (DvSnf7), an essential component of insect cell receptor sorting. A quantitative assay was developed to detect DvSnf7 sense strand-containing dsRNA transcripts that is based on the QuantiGene Plex 2.0 RNA assay platform from Affymetrix. The QuantiGene assay utilizes cooperative binding of multiple oligonucleotide probes with specificity for the target sequence resulting in exceptionally high assay specificity. Successful implementation of this assay required heat denaturation in the presence of the oligonucleotide probes prior to hybridization, presumably to dissociate primary transcripts carrying the duplex dsRNA structure. The dsRNA assay was validated using a strategy analogous to the rigorous enzyme-linked immunosorbent assay evaluations that are typically performed for foreign proteins expressed in transgenic plants. Validation studies indicated that the assay is sensitive (to 10 pg of dsRNA/g of fresh tissue), highly reproducible, and linear over ∼2.5 logs. The assay was validated using purified RNA from multiple maize tissue types, and studies indicate that the assay is also quantitative in crude tissue lysates. To the best of our knowledge, this is the first report of a non-polymerase chain reaction-based quantitative assay for dsRNA-containing transcripts, based on the use of the QuantiGene technology platform, and will broadly facilitate characterization of dsRNA in biological and environmental samples.
A biotechnology-derived corn variety, MON 87411, containing a suppression cassette that expresses an inverted repeat sequence that matches the sequence of western corn rootworm (WCR; Diabrotica virgifera virgifera) has been developed. The expression of the cassette results in the formation of a double-stranded RNA (dsRNA) transcript containing a 240 bp fragment of the WCR Snf7 gene (DvSnf7) that confers resistance to corn rootworm by suppressing levels of DvSnf7 mRNA in WCR after root feeding. Internationally accepted guidelines for the assessment of genetically modified crop products have been developed to ensure that these plants are as safe for food, feed, and environmental release as their non-modified counterparts (Codex, 2009). As part of these assessments MON 87411 must undergo an extensive environmental assessment that requires large quantities of DvSnf7 dsRNA that was produced by in vitro transcription (IVT). To determine if the IVT dsRNA is a suitable surrogate for the MON 87411-produced DvSnf7 dsRNA in regulatory studies, the nucleotide sequence, secondary structure, and functional activity of each were characterized and demonstrated to be comparable. This comprehensive characterization indicates that the IVT DvSnf7 dsRNA is equivalent to the MON 87411-produced DvSnf7 dsRNA and it is a suitable surrogate for regulatory studies.
Previous observational studies have highlighted associations between adipokines and hyperuricemia, as well as gout, but the causality and direction of these associations are not clear. Therefore, we attempted to assess whether there are causal effects of specific adipokines (such as adiponectin (ADP) and soluble leptin receptors (sOB-R)) on uric acid (UA) or gout in a two-sample Mendelian randomization (MR) analysis, based on summary statistics from large genome-wide association studies. The inverse-variance weighted (IVW) method was performed as the primary analysis. Sensitivity analyses (including MR-Egger regression, weighted median, penalized weighted median, and MR pleiotropy residual sum and outlier methods) were also performed, to ensure reliable results. In the IVW models, no causal effect was found for sOB-R (odds ratios (OR), 1.002; 95% confidence intervals (CI), 0.999–1.004; p = 0.274) on UA, or ADP (OR, 1.198; 95% CI, 0.865–1.659; p = 0.277) or sOB-R (OR, 0.988; 95% CI, 0.940–1.037; p = 0.616) on gout. The results were confirmed in sensitivity analyses. There was no notable directional pleiotropy or heterogeneity. This study suggests that these specific adipokines may not play causal roles in UA or gout development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.