Aging contributes significantly to cardiovascular diseases and cardiac dysfunction. To explore the reasons for the decline in cardiac function in the elderly, we collected clinical data and blood samples from 231 individuals. Our results indicated that aging was accompanied by a decline in cardiac function and remodeling of the left ventricle, and cardiac function was negatively correlated with age. Serum hydrogen sulfide (H2S) decreased, while serum malondialdehyde (MDA) and iron increased with aging in healthy individuals. A rat model of aging and iron overload was constructed for in vivo research. In the animal model, we found that the expression of endogenous H2S-producing enzymes decreased, and endogenous H2S levels decreased, while oxidative stress levels rose. The regulation of iron metabolism and the maintenance of iron homeostasis declined. The accumulation of MDA and iron led to ferroptotic cell death and subsequent myocardial injury and deterioration. A high-iron diet accelerated the aging process and death in rats. The decline of cardiac function in aging rats and iron-overload rats may be caused by cardiomyocyte ferroptosis. Exogenous H2S enhanced the expression of endogenous H2S synthase, promoted endogenous H2S production, regulated iron metabolism, and reduced oxidative stress levels. The protective effects of H2S on cardiac function in aging rats and iron-overload rats may be partly due to the inhibition of cardiomyocyte ferroptosis. We demonstrated that cardiac dysfunction associated with aging was closely related to decreased endogenous H2S levels and cardiomyocyte ferroptosis. H2S-regulated iron metabolism reduced oxidative stress levels in cardiomyocytes, inhibited cardiomyocyte ferroptosis, and protected cardiac function in aging rats.
Background: Allergic rhinitis (AR) is globally prevalent and its pathogenesis remains unclear. Alternative activation of macrophages is suggested in AR and thought to be involved in natural immunoregulatory processes in AR. Aberrant activation of Nod-like receptor protein 3 (NLRP3) inflammasome is linked with AR. Human placenta extract (HPE) is widely used in clinics due to its multiple therapeutic potential carried by diverse bioactive molecules. We aim to investigate the effect of HPE on AR and the possible underlying mechanism. Methods: Ovalbumin (OVA)-induced AR rat model was set up and treated by HPE or cetirizine. General manifestation of AR was evaluated along with the histological and biochemical analysis performed on rat nasal mucosa. A proteomic analysis was performed on AR rat mucosa. Mouse alveolar macrophages (MH-S cells) were cultured under OVA stimulation to investigate the regulation of macrophages polarization. The morphological changes of nasal mucosa, the expression of NLRP3 inflammasome and immunity-related GTPase M (IRGM) in nasal mucosa as well as in MH-S cells were evaluated respectively. Results: The general manifestation of AR along with the histological changes in nasal mucosa of AR rats were improved by HPE. HPE treatment suppressed NLRP3 inflammasome and the decline of IRGM in AR rats and MH-S cells. HPE regulates macrophage polarization through IRGM/ NLRP3 in AR. Conclusions: HPE had protection for AR and the protection is achieved partly through suppressing M1 while promoting M2, the process which is mediated by IRGM via inhibiting NLRP3 inflammasome in AR
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.