A synthetic molecularly imprinted polymer (MIP) sorbent for estrogenic compounds was prepared using a noncovalent imprinting technique. MIP microspheres sized from 1 to 2 microm were synthesized in acetonitrile by using alpha-estradiol as the template, acrylamide as the functional monomer, and trimethylpropanol trimethacrylate as the cross-linker. When compared with the nonimprinted polymer (NIP), the MIP showed outstanding affinity toward alpha-estradiol in aqueous solution with a binding site capacity (B(max)) of 380 nmol mg(-1) MIP, imprinting effect of 35, and a dissociation constant (Kd) of 38 microM. The MIP exhibited significant binding affinity toward other related estrogenic compounds such as beta-estradiol, diethylstilbestrol, estriol, and estrone, suggesting that this material may be appropriate for treating a complex mixture of estrogenic pollutants. The feasibility of removing estrogenic compounds from environmental water by the MIP was demonstrated using lake water spiked with alpha-estradiol. In addition, the MIP reusability without any deterioration in performance was demonstrated for at least five repeated cycles.
Intelligent stimuli-responsive molecularly imprinted polymers (SR-MIPs) have attracted considerable research interest in recent years due to the potential applications in drug delivery, biotechnology and separation sciences. This review comprehensively summarizes various SR-MIPs, including the design and applications of thermo-responsive MIPs, pH-responsive MIPs, photo-responsive MIPs, biomolecule-responsive MIPs and ion-responsive MIPs. Besides the development of current SR-MIPs, the advantages as well as the disadvantages of current SR-MIPs were also displayed from different angles, especially preparation methods and application fields. We believe this review will be helpful to guide the design, development and application of SR-MIPs.Polymers 2015, 7 1690
The toxicity of NPs is not well characterized in terms of their size. In particular, the size-based toxicity of fullerene (C(60)) remains an issue because of a lack of C(60) NPs with a well-controlled size. In this work, six fractions of the nano-C(60) aggregates (nC(60)) with different size distribution were prepared by a simple differential centrifugation. By using these nC(60) fractions, we demonstrate the size-dependent inhibition of DNA polymerase and reduced-size enhanced cytotoxicity. Above all, we found that nC(60) NPs with smaller size may have higher toxicity potency. These size-dependent effects were observed at the high exposure doses (4-6 mg/L). Interestingly, at 20-times lower and noncytotoxic doses, the size-dependent effect can be indicated by apoptosis-related fluorescent protein fused Bax translocation. Considering the toxicity of NPs is often ignored in the traditional end-point analysis for cytotoxicity when the exposure dose is low, the findings presented here will assist in the evaluation of the size-dependent cytotoxicity and dose-response relationships of toxicity mediated by nC(60) NPs at low doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.