Developing cheap and earth-abundant electrocatalysts with high activity and stability for oxygen reduction reactions (ORRs) is highly desired for the commercial implementation of fuel cells and metal-air batteries. Tremendous efforts have been made on doped-graphene catalysts. However, the progress of phosphorus-doped graphene (P-graphene) for ORRs has rarely been summarized until now. This review focuses on the recent development of P-graphene-based materials, including the various synthesis methods, ORR performance, and ORR mechanism. The applications of single phosphorus atom-doped graphene, phosphorus, nitrogen-codoped graphene (P, N-graphene), as well as phosphorus, multi-atoms codoped graphene (P, X-graphene) as catalysts, supporting materials, and coating materials for ORR are discussed thoroughly. Additionally, the current issues and perspectives for the development of P-graphene materials are proposed.
The supporting material with an optimal structure not only changes the growth behavior but also tunes the electronic structure of the catalyst.
It is necessary to develop new energy technologies because of serious environmental problems. As one of the most promising electrochemical energy conversion and storage devices, the Zn–air battery has attracted extensive research in recent years due to the advantages of abundant resources, low price, high energy density, and high reduction potential. However, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) of Zn–air battery during discharge and charge have complicated multi-electron transfer processes with slow reaction kinetics. It is important to develop efficient and stable oxygen electrocatalysts. At present, single-function catalysts such as Pt/C, RuO2, and IrO2 are regarded as the benchmark catalysts for ORR and OER, respectively. However, the large-scale application of Zn–air battery is limited by the few sources of the precious metal catalysts, as well as their high costs, and poor long-term stability. Therefore, designing bifunctional electrocatalysts with excellent activity and stability using resource-rich non-noble metals is the key to improving ORR/OER reaction kinetics and promoting the commercial application of the Zn–air battery. Metal–organic framework (MOF) is a kind of porous crystal material composed of metal ions/clusters connected by organic ligands, which has the characteristics of adjustable porosity, highly ordered pore structure, low crystal density, and large specific surface area. MOFs and their derivatives show remarkable performance in promoting oxygen reaction, and are a promising candidate material for oxygen electrocatalysts. Herein, this review summarizes the latest progress in advanced MOF-derived materials such as oxygen electrocatalysts in a Zn–air battery. Firstly, the composition and working principle of the Zn–air battery are introduced. Then, the related reaction mechanism of ORR/OER is briefly described. After that, the latest developments in ORR/OER electrocatalysts for Zn–air batteries are introduced in detail from two aspects: (i) non-precious metal catalysts (NPMC) derived from MOF materials, including single transition metals and bimetallic catalysts with Co, Fe, Mn, Cu, etc.; (ii) metal-free catalysts derived from MOF materials, including heteroatom-doped MOF materials and MOF/graphene oxide (GO) composite materials. At the end of the paper, we also put forward the challenges and prospects of designing bifunctional oxygen electrocatalysts with high activity and stability derived from MOF materials for Zn–air battery.
Developing low-platinum catalysts is considered a promising strategy to facilitate the commercialization of fuel cells. However, the electrochemical performance of such materials is often hindered by mass-transfer issues. In this study, platinum nanoparticles supported on iron and nitrogen-doped holey graphene (Pt/Fe, N-HG) were synthesized by a simple method and used as an oxygen reduction reaction (ORR) catalyst. The unique holey structure and the co-doping of Fe and N atoms are proved beneficial for not only the formation of Pt nanoparticles but also enhancing the electrochemical performance of the catalyst. Density functional theory calculations indicate that the co-doping of Fe and N atoms increases the ability to adsorb Pt, as well as enhances the Pt adsorption of O2 and oxygen-containing intermediates in the ORR. This study presents a novel approach for the controllable synthesis of multidoped holey graphene-based electrocatalysts, with optimized surface holey structures and electrochemical performances. These findings offer significant insights into the development of efficient catalysts for fuel cell applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.