In order to protect public health and crops from soil heavy metal (HM) contamination at a coal mining area in Henan, central China, HM pollution investigation and screening of autochthonous HM phytoextractors were conducted. The concentrations of cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) in surface soils exceeded the corresponding local background values and the China National Standard (CNS). The maximum potential ecological risk (RI) was 627.30, indicating very high ecological risk. The monomial risk of Cd contributed the most to the RI, varying from 85.48% to 96.48%. The plant community structure in the study area was simple, and was composed of 24 families, 37 genera and 40 species. B. pilosa, A. roxburghiana, A. argyi, A. hispidus were found to be the most dominant species at considerable risk sites. Based on the comprehensive analysis of Cd concentration, bioconcentration factor, translocation factor and adaptability factor, B. pilosa and A. argyi had potential for phytoextraction at considerable risk sites. A. roxburghiana had potential for Cd phytoextraction at moderately risk sites and A. hispidus seemed suitable for phytostabilization. The results could contribute to the phytoremediation of the similar sites.
Depth to water table (DWT, the depth from the water surface to the top of the peat surface) is one of the most important environmental variables related to the habitat types and distribution of vegetation within a subalpine peatland. The distribution of phytolith assemblages and basic environmental data from 43 surface soil samples with significant ecological and hydrological gradients were investigated to generate transfer functions for quantitative reconstruction of paleoenvironmental changes in Dajiuhu peatland, central China. Detrended correspondence analysis (DCA) and redundancy analysis (RDA) were employed to explore the relationship between main environmental variables and phytolith morphotypes and distributions. Our results indicate that the spatial distribution of phytoliths was significantly correlated with the DWT (25% variance), total organic carbon (TOC, 10% variance) and magnetic susceptibility (χ, 7% variance). We established the transfer functions for the significant variables based on modern analogue technique (MAT), weighted averaging techniques (WA) and weighted averaging partial least squares (WA-PLS), and model performance was assessed using bootstrap cross-validation. The high correspondence of the predicted DWT results based on phytolith-environment calibration data with observed data reflects that the phytolith-based WA-PLS is a reliable effective calibration method for the quantitative DWT reconstruction of ombrotrophic (rain-fed) subalpine peatland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.