Nuclear grade axial flow fans are widely used in nuclear power plants for ventilation and heat dissipation and have the advantages of high efficiency and high flow rates. A nuclear grade axial flow fan with OGVs (outlet guide vanes) can recover the kinetic energy of the dynamic impeller outlet winding to increase the ventilator pressure, thus improving the ventilator efficiency; therefore, the OGVs play an essential role in the performance of the axial flow fan. Based on accurate numerical simulations, an MRGP approximation model was developed to analyse the factors affecting the OGVs duct and optimise the guide vane structure, combined with the Sobol method for sensitivity analysis. The experiments and numerical simulations show that the total pressure of the optimised model increases by 154 Pa, and the noise decreases by 4.1 dB. The multi-objective optimisation method using the parametric approach and combining it with the MRGP model is highly reliable. It provides a key design direction for optimising nuclear grade axial flow fans.
As an essential fluid machine in national production, the optimal design of the performance of fans has long been a focus of research. In the format of small diagonal flow fans with rear guide vanes, there are too many design variables, and the design parameters interact with each other, resulting in a degradation of the fan’s performance under actual operating conditions. Under realistic conditions, many uncertainties exist in the object of study and fluctuations in variables and parameters lead to a specific deviation of the optimization target from the design target. A method is needed for the robust and optimal design of angular flow fans under stochastic operating conditions of the design variables. In this paper, a multi-objective aerodynamic performance powerful design method is proposed using Pearson correlation analysis, combined with CFD calculation method, Latin hypercube experimental design and the Kriging agent model, to optimize the rear guide vane structural parameters of the diagonal flow fan under uncertain aerodynamic performance conditions, analyze the flow field characteristics before and after the modification, and select the optimal design model for the release. The test results show that the total pressure of the optimized fan is increased by 86 Pa, and the noise is reduced by 2.4 dB. The proposed optimization method is effective and can also be used to optimize the performance of other types of fans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.