Early warning prediction of traumatic hemorrhagic shock (THS) can greatly reduce patient mortality and morbidity. We aimed to develop and validate models with different stepped feature sets to predict THS in advance. From the PLA General Hospital Emergency Rescue Database and Medical Information Mart for Intensive Care III, we identified 604 and 1,614 patients, respectively. Two popular machine learning algorithms (i.e., extreme gradient boosting [XGBoost] and logistic regression) were applied. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the performance of the models. By analyzing the feature importance based on XGBoost, we found that features in vital signs (VS), routine blood (RB), and blood gas analysis (BG) were the most relevant to THS (0.292, 0.249, and 0.225, respectively). Thus, the stepped relationships existing in them were revealed. Furthermore, the three stepped feature sets (i.e., VS, VS + RB, and VS + RB + sBG) were passed to the two machine learning algorithms to predict THS in the subsequent T hours (where T = 3, 2, 1, or 0.5), respectively. Results showed that the XGBoost model performance was significantly better than the logistic regression. The model using vital signs alone achieved good performance at the half-hour time window (AUROC = 0.935), and the performance was increased when laboratory results were added, especially when the time window was 1 h (AUROC = 0.950 and 0.968, respectively). These good-performing interpretable models demonstrated acceptable generalization ability in external validation, which could flexibly and rollingly predict THS T hours (where T = 0.5, 1) prior to clinical recognition. A prospective study is necessary to determine the clinical utility of the proposed THS prediction models.
A high-performing interpretable model is proposed to predict the risk of deterioration in coronavirus disease 2019 (COVID-19) patients. The model was developed using a cohort of 3028 patients diagnosed with COVID-19 and exhibiting common clinical symptoms that were internally verified (AUC 0.8517, 95% CI 0.8433, 0.8601). A total of 15 high risk factors for deterioration and their approximate warning ranges were identified. This included prothrombin time (PT), prothrombin activity, lactate dehydrogenase, international normalized ratio, heart rate, body-mass index (BMI), D-dimer, creatine kinase, hematocrit, urine specific gravity, magnesium, globulin, activated partial thromboplastin time, lymphocyte count (L%), and platelet count. Four of these indicators (PT, heart rate, BMI, HCT) and comorbidities were selected for a streamlined combination of indicators to produce faster results. The resulting model showed good predictive performance (AUC 0.7941 95% CI 0.7926, 0.8151). A website for quick pre-screening online was also developed as part of the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.