The Na(3p) + H2(X1Σg+) → NaH(X1Σ+) + H(2S) reaction plays an important role in the field of diabatic reaction dynamics. A set of new diabatic potential energy surfaces (PESs) of the NaH2 system are structured, which include the diabatic coupling between the lowest two adiabatic states. The electronic structure calculations are performed on the multi-reference configuration interaction level with the cc-pwCVQZ and aug-cc-PVQZ basis sets for Na and H atoms. 32402 geometries are chosen to construct the diabatic data by a unitary transformation based on the molecular property method. The diabatic matrix elements of , and () are fitted by the artificial neural network model. The spectroscopic constants of diatoms obtained from the present PESs are consistent with the experimental data. The topographical and intersection characteristics of the and surfaces are discussed. Based on the new PESs, the time-dependent quantum wave packet calculations are carried out to study the reaction mechanism of the title reaction in detail.
Effects of binding modes and anchoring groups on nonequilibrium electronic transport properties of alkane molecular wires are investigated from atomic first-principles based on density functional theory and nonequilibrium Green's function formalism. Four typical binding modes, top, bridge, hcp-hollow, and fcc-hollow, are considered at one of the two contacts. For wires with three different anchoring groups, dithiol, diamine, or dicarboxylic acid, the low bias conductances resulting from the four binding modes are all found to have either a high or a low value, well consistent with recent experimental observations. The trend can be rationalized by the behavior of electrode-induced gap states at small bias. When bias increases to higher values, states from the anchoring groups enter into the bias window and contribute significantly to the tunneling process so that transport properties become more complicated for the four binding modes. Other low bias behaviors including the values of the inverse length scale for tunneling characteristic, contact resistance, and the ratios of the high/low conductance values are also calculated and compared to experimental results. The conducting capabilities of the three anchoring groups are found to decrease from dithiol, diamine to dicarboxylic-acid, largely owing to a decrease in binding strength to the electrodes. Our results give a clear microscopic picture to the transport physics and provide reasonable qualitative explanations for the corresponding experimental data.
The electron transport properties of ZnO nano-wires coupled by two aluminium electrodes were studied by ab initio method based on non-equilibrium Green's function approach and density functional theory. A clearly rectifying currentvoltage characteristics was observed. It was found that the contact interfaces between Al-O and Al-Zn play important roles in the charge transport at low bias voltage and give very asymmetric I-V characteristics. When the bias voltage increases, the negative differential resistance occurs at negative bias voltage. The charge accumulation was calculated and its behavior was found to be well correlated with the I-V characteristics. We have also calculated the electrochemical capacitance which exhibits three plateaus at different bias voltages which may have potential device application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.