Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Surgery followed by chemotherapy and radiotherapy remains the standard treatment strategy for GBM patients. However, challenges still exist when surgery is difficult or impossible to remove the tumor completely. Herein, the design, fabrication and application of a heterogenous silk fibroin microneedle (SMN) patch is reported for circumventing the blood‐brain barrier and releasing multiple drugs directly to the tumor site for drug combination treatment. The biocompatible and biodegradable SMN patch can dissolve slowly over time, allowing the sustained release of multiple drugs at different doses. Furthermore, it can be triggered remotely to induce rapid drug delivery at a designated stage after implantation. In the GBM mouse models, two clinically relevant chemotherapeutic agents (thrombin and temozolomide) and targeted drug (bevacizumab) are loaded into the SMN patch with individually controlled release profiles. The drugs are spatiotemporally and sequentially delivered for hemostasis, anti‐angiogenesis, and apoptosis of tumor cells. Device application is non‐toxic and results in decreased tumor volume and increased survival rate in mice. The SMN patch with on‐demand multidrug delivery has potential applications for the combined administration of therapeutic drugs for the clinical treatment of brain tumors when other methods are insufficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.