A new computational fluid dynamics method, the incompressible lattice Boltzmann method (LBM) is utilized to simulate fluid flow of the infinitely wide wedge in this paper. Compared with the traditional method, LBM is a mesoscopic scale method and some characteristics can be described more clearly with LBM. In this article, three kinds of model .i.e. linear type, parabolic type and harmonic type wedge models are built. The streamline and velocity contour in the fluid field are described. The pressure distribution of different types wedge is studied in LBM. The results manifest that, for the same bottom boundary velocity, the parabolic type and harmonic type wedges are easy to form a vortex, and the load capacity in the harmonic type wedge model is the largest. This paper is ready to investigate the microscopic lubrication mechanism of journal bearing in the future.
Dynamic analysis of water-lubricated marine stern tube bearing is incompatible with that of ordinary oil-lubricated bearing due to the deformation of compliant bushes and non-negligible roughness effects. A modified bearing dynamic analysis model embracing roughness and dynamic characteristics of a non-metal bush is proposed. Based on the model, Reynolds equations of perturbed pressures of water film considering roughness, deformation, and misalignment simultaneously are derived for the first time and solved by coupling the finite difference method and the finite-element method. The results show that dynamic coefficients are enhanced due to roughness when the minimum film thickness ratio exceeds a threshold around 2. The roughness effect is debilitated but the valid range of roughness is extended when bush deformation is considered. Additionally, dynamic coefficients of rougher bearing become obviously smaller than those of smoother bearing as the misalignment angle grows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.