Since Allen et al. demonstrated 30 years ago that beams with helical wavefronts carry orbital angular momentum (OAM), the OAM of beams has attracted extensive attention and stimulated lots of applications in both classical and quantum physics. Akin to an optical frequency comb, a beam can carry multiple various OAM components simultaneously. A series of discrete, equally spaced, and equally weighted OAM modes comprise an OAM comb. Inspired by the spatially extended laser lattice, we demonstrate both theoretically and experimentally an approach to producing OAM combs through azimuthal binary phases. Our study shows that transition points in the azimuth determine the OAM distributions of diffracted beams. Multiple azimuthal transition points lead to a wide OAM spectrum. Moreover, an OAM comb with any mode spacing is achievable through reasonably setting the position and number of azimuthal transition points. The experimental results fit well with theory. This work presents a simple approach that opens new prospects for OAM spectrum manipulation and paves the way for many applications including OAM-based high-security encryption and optical data transmission, and other advanced applications.
Optical vortex array has drawn widespread attention since the boom of special applications such as molecular selecting and optical communication. Here, we propose an integrated phase-only scheme to generate multiple multiplexed vortex beams simultaneously, constituting a multiplexed vortex state array, where the spatial position, as well as the corresponding orbital angular momentum (OAM) spectrum, can be manipulated flexibly as desired. Proof-of-concept experiments are carried out and show a few different multiplexed vortex state arrays that fit well with the simulation. Moreover, regarding the array as a data-carrier, a one-to-many multicasting link through multi-state OAM shift keying, a high-dimensional data coding, is also available in free space. In the experiment, four various OAM states are employed and achieve four bits binary symbols, and finally distribute three different images to three separate receivers independently from the same transmitter, showing great potential in the future high-dimensional optical networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.