Large scale data processing brings new challenges to the design of privacy-preserving protocols: how to meet the increasing requirements of speed and throughput of modern applications, and how to scale up smoothly when data being protected is big. Efficiency and scalability become critical criteria for privacy preserving protocols in the age of Big Data. In this paper, we present a new Private Set Intersection (PSI) protocol that is extremely efficient and highly scalable compared with existing protocols. The protocol is based on a novel approach that we call oblivious Bloom intersection. It has linear complexity and relies mostly on efficient symmetric key operations. It has high scalability due to the fact that most operations can be parallelized easily. The protocol has two versions: a basic protocol and an enhanced protocol, the security of the two variants is analyzed and proved in the semi-honest model and the malicious model respectively. A prototype of the basic protocol has been built. We report the result of performance evaluation and compare it against the two previously fastest PSI protocols. Our protocol is orders of magnitude faster than these two protocols. To compute the intersection of two million-element sets, our protocol needs only 41 seconds (80-bit security) and 339 seconds (256-bit security) on moderate hardware in parallel mode.
When designing infographics, general users usually struggle with getting desired color palettes using existing infographic authoring tools, which sometimes sacrifice customizability, require design expertise, or neglect the influence of elements' spatial arrangement. We propose a data-driven method that provides flexibility by considering users' preferences, lowers the expertise barrier via automation, and tailors suggested palettes to the spatial layout of elements. We build a recommendation engine by utilizing deep learning techniques to characterize good color design practices from data, and further develop InfoColorizer, a tool that allows users to obtain color palettes for their infographics in an interactive and dynamic manner. To validate our method, we conducted a comprehensive four-part evaluation, including case studies, a controlled user study, a survey study, and an interview study. The results indicate that InfoColorizer can provide compelling palette recommendations with adequate flexibility, allowing users to effectively obtain high-quality color design for input infographics with low effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.