The swarm intelligence algorithm is a new technology proposed by researchers inspired by the biological behavior of nature, which has been practically applied in various fields. As a kind of swarm intelligence algorithm, the newly proposed sparrow search algorithm has attracted extensive attention due to its strong optimization ability. Aiming at the problem that it is easy to fall into local optimum, this paper proposes an improved sparrow search algorithm (IHSSA) that combines infinitely folded iterative chaotic mapping (ICMIC) and hybrid reverse learning strategy. In the population initialization stage, the improved ICMIC strategy is combined to increase the distribution breadth of the population and improve the quality of the initial solution. In the finder update stage, a reverse learning strategy based on the lens imaging principle is utilized to update the group of discoverers with high fitness, while the generalized reverse learning strategy is used to update the current global worst solution in the joiner update stage. To balance exploration and exploitation capabilities, crossover strategy is joined to update scout positions. 14 common test functions are selected for experiments, and the Wilcoxon rank sum test method is achieved to verify the effect of the algorithm, which proves that IHSSA has higher accuracy and better convergence performance to obtain solutions than 9 algorithms such as WOA, GWO, PSO, TLBO, and SSA variants. Finally, the IHSSA algorithm is applied to three constrained engineering optimization problems, and satisfactory results are held, which proves the effectiveness and feasibility of the improved algorithm.
To solve the problems of the original sparrow search algorithm’s poor ability to jump out of local extremes and its insufficient ability to achieve global optimization, this paper simulates the different learning forms of students in each ranking segment in the class and proposes a customized learning method (CLSSA) based on multi-role thinking. Firstly, cube chaos mapping is introduced in the initialization stage to increase the inherent randomness and rationality of the distribution. Then, an improved spiral predation mechanism is proposed for acquiring better exploitation. Moreover, a customized learning strategy is designed after the follower phase to balance exploration and exploitation. A boundary processing mechanism based on the full utilization of important location information is used to improve the rationality of boundary processing. The CLSSA is tested on 21 benchmark optimization problems, and its robustness is verified on 12 high-dimensional functions. In addition, comprehensive search capability is further proven on the CEC2017 test functions, and an intuitive ranking is given by Friedman's statistical results. Finally, three benchmark engineering optimization problems are utilized to verify the effectiveness of the CLSSA in solving practical problems. The comparative analysis shows that the CLSSA can significantly improve the quality of the solution and can be considered an excellent SSA variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.