Objectives To develop a nomogram based on CT radiomics and clinical features to predict the epidermal growth factor receptor (EGFR) mutations in early‐stage lung adenocarcinomas. Methods A retrospective analysis of postoperative patients with pathologically confirmed lung adenocarcinoma, which had been tested for EGFR mutations was performed from January 2015 to December 2015. Patients were randomly assigned to training and validation cohorts. A total of 1,078 radiomics features were extracted. least absolute shrinkage and selection operator (LASSO) regression analysis was applied to select clinical and radiomics features, and to establish predictive models. The radiomics score (rad‐score) of each patient was calculated. The discrimination of the model was evaluated with area under the curve. Results 1092 patients (444 men and 648 women; mean age: 59.59±9.6) were enrolled. The radiomics signature consisted of 28 radiomics features and emphysema. The mean validation cohort result of the rad‐score for patients with EGFR mutations (0.814±0.988) was significantly higher than those with EGFR wild‐type (0.315±1.237; p = 0.001). When combined with clinical features, LASSO regression analysis revealed four radiomics features, emphysema, and three clinical features including sex, age, and histologic subtype as associated with to EGFR mutation status. The nomogram that combined radiomics and clinical features significantly improved the predictive discrimination (AUC: 0.723), which is better than that of the radiomics signature alone (AUC: 0.646). Conclusion A relationship between selected radiomics features and EGFR mutant lung adenocarcinomas is demonstrated. A nomogram, combining radiomics features and clinical features for EGFR prediction in early‐stage lung adenocarcinomas, has shown a moderate discriminatory efficiency and high sensitivity, providing additional information for clinicians.
Background: Plastic scintillator detector (PSD) Exradin W1 has shown promising performance in small field dosimetry due to its water equivalence and small sensitive volume. However, few studies reported its capability in measuring fields of conventional sizes. Therefore, the purpose of this study is to assess the performance of W1 in measuring point dose of both conventional IMRT plans and VMAT SRS plans. Methods: Forty-seven clinical plans (including 29 IMRT plans and 18 VMAT SRS plans with PTV volume less than 8 cm3) from our hospital were included in this study. W1 and Farmer-Type ionization chamber Exradin A19 were used in measuring IMRT plans, and W1 and microchamber Exradin A16 were used in measuring SRS plans. The agreement between the results of different types of detectors and TPS was evaluated. Results: For IMRT plans, the average differences between measurements and TPS in high-dose regions were 0.27% ± 1.66% and 0.90% ± 1.78% ( P = 0.056), and were −0.76% ± 1.47% and 0.37% ± 1.34% in low-dose regions ( P = 0.000), for W1 and A19, respectively. For VMAT SRS plans, the average differences between measurements and TPS were −0.19% ± 0.96% and −0.59% ± 1.49% for W1 and A16 with no statistical difference ( P = 0.231). Conclusion: W1 showed comparable performance with application-dedicated detectors in point dose measurements for both conventional IMRT and VMAT SRS techniques. It is a potential one-stop solution for general radiotherapy platforms that deliver both IMRT and SRS plans.
Purpose:The time required to deliver a treatment impacts not only the number of patients that can be treated each day but also the accuracy of delivery due to potential movements of patient tissues. Both macroscopic and microscopic timing characteristics of a beam delivery system were studied to examine their impacts on patient treatments.Methods:35 patients were treated during a clinical trial to demonstrate safety and efficacy of a Siemens Iontris system prior to receiving approval from the Chinese Food and Drug Administration. The system has a variable cycle time and can provide proton beams from 48 to 221 MeV/n and carbon ions from 86 to 430 MeV/n. A modulated scanning beam delivery technique is used where the beam remains stationary at each spot aiming location and is not turned off while the spot quickly moves from one aiming location to the next. The treatment log files for 28 of the trial patients were analyzed to determine several timing characteristics.Results:The average portal time per target dose was 172.5 s/Gy for protons and 150.7 s/Gy for carbon ions. The maximum delivery time for any portal was less than 300 s. The average dwell time per spot was 12 ms for protons and 3.0 ms for carbon ions. The number of aiming positions per energy layer varied from 1 to 258 for protons and 1 to 621 for carbon ions. The average spill time and cycle time per energy layer were 1.20 and 2.68 s for protons and 0.95 and 4.73 s for carbon ions respectively. For 3 of the patients, the beam was gated on and off to reduce the effects of respiration.Conclusion:For a typical target volume of 153 cc as used in this clinical trial, the portal delivery times were acceptable.
A compact room-temperature linear injector has been purposed to accelerate an 18.0 mA proton beam to 7.0 MeV for synchrotron-based proton therapy. The total length is appropriately 5 m. It mainly consists of a 3.01 m radio frequency quadrupole (RFQ) and a 0.82 m compact interdigital H-mode drift tube linac (IH-DTL) structure. Based on a fast-bunching strategy, the RFQ, operated at 325 MHz, accelerates protons to 3.0 MeV. The phase advances have been taken into consideration, and parametric resonance has been carefully avoided by adjusting the vane parameters. After the modulation of the transverse and longitudinal phase advances and a compact external quadrupole triplet, the proton beam is injected into the subsequent IH-DTL. Based on modified Kombinierte Null Grad Strukter (KONUS) beam dynamics, it accelerates protons up to 7.0 MeV, which is composed of a re-bunching section and an accelerating section. The accelerating gradient reaches 4.88 MV/m. The overall dynamic simulation results show that the whole accelerating gradient reaches up to 1.62 MV/m with a transmission efficiency above 95%. The transverse and longitudinal normalized RMS emittances at the exit of the DTL are 0.23 π mm·mrad and 2.216 π keV/u·ns, which meet the synchrotron injection requirements. The details of the specific design of this injector are presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.