For over a decade, ionic liquids (ILs) have attracted enormous attention from scientists across the globe. The history of these compounds traces back to 1914 where the inception of the first IL with a melting point of 12°C was made. Years later, a progression of the remarkable related compounds have been discovered. Out of many analogous compounds realized from time to time, the imidazolium class of ionic liquid is the most studied because of their air and moisture stability. The physicochemical properties of ILs differ significantly depending on the anionic/cationic species and alkyl chain length. ILs have found application in many scientific fields the most recent being good solvents and stabilizing agents in the nanomaterial synthesis. Studies have showed that ILs not only stabilize as synthesized nanomaterials but also provide environmentally green routes towards nanomaterials engineering.
Bioenergy production from waste is one of the emerging and viable routes from renewable resources (in addition to wind and solar energy). Many developing countries can benefit from this as they are trying to solve the large amounts of unattended garbage in landfills. This waste comes in either liquid (wastewater and oil) or solid (food and agricultural residues) form. Waste has negative impacts on the environment and, consequently, any form of life that exists therein. One way of solving this waste issue is through its usage as a resource for producing valuable products, such as biofuels, thus, creating a circular economy, which is in line with the United Nations (UN) Sustainable Development Goals (SDGs) 5, 7, 8, 9, and 13. Biofuel in the form of biogas can be produced from feedstocks, such as industrial wastewater and municipal effluent, as well as organic solid waste in a process called anaerobic digestion. The feedstock can be used as an individual substrate for anaerobic digestion or co-digested with two other substrates. Research advancements have shown that the anaerobic digestion of two or more substrates produces higher biogas yields as compared to their single substrates’ counterparts. The objective of this review was to look at the anaerobic digestion process and to provide information on the potential of biogas production through the co-digestion of sugarcane processing wastewater and municipal solid waste. The study deduced that sugar wastewater and municipal solid waste can be considered good substrates for biogas production in SA due to their enormous availability and the potential to turn their negative impacts into value addition. Biogas production is a feasible alternative, among others, to boost the country from the current energy issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.