Different material thickness with medium and high dielectric constant can impact the performance and reliability of high electron mobility transistor device. With varying the thickness of the passivation layer, the effect of it towards the device performance is still unclear. Two different insulator layers with a medium dielectric and a high dielectric constant namely Aluminium Nitride and Hafnium Oxide are used as passivation layer in AlGaN/GaN HEMT. Both material performance was simulated via COMSOL software by varying the thickness and the drain current output were compared. The passivation layer thickness of 10nm at Vds=6 V and Vgs=5 V, HfO2 outperforms AlN with the output drain current of 39 mA compared to 35 mA respectively. It was observed that HfO2 can attain higher threshold voltage, Vth as compared to the AlN because of the influence of its material properties that shows a direct proportional relationship between Vth and dielectric constant. Using high dielectric constant material like HfO2, we observe the ON-voltage gradually decreases as the thickness of the passivation layer increased. Out of all the thickness simulated for HfO2 and AlN, 10nm produced the highest drain current output instead of layer thickness of 20nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.