Fourier phase retrieval is a classical problem that deals with the recovery of an image from the amplitude measurements of its Fourier coefficients. Conventional methods solve this problem via iterative (alternating) minimization by leveraging some prior knowledge about the structure of the unknown image. The inherent ambiguities about shift and flip in the Fourier measurements make this problem especially difficult; and most of the existing methods use several random restarts with different permutations. In this paper, we assume that a known (learned) reference is added to the signal before capturing the Fourier amplitude measurements. Our method is inspired by the principle of adding a reference signal in holography. To recover the signal, we implement an iterative phase retrieval method as an unrolled network. Then we use back propagation to learn the reference that provides us the best reconstruction for a fixed number of phase retrieval iterations. We performed a number of simulations on a variety of datasets under different conditions and found that our proposed method for phase retrieval via unrolled network and learned reference provides near-perfect recovery at fixed (small) computational cost. We compared our method with standard Fourier phase retrieval methods and observed significant performance enhancement using the learned reference.
Signal recovery from nonlinear measurements involves solving an iterative optimization problem. In this paper, we present a framework to optimize the sensing parameters to improve the quality of the signal recovered by the given iterative method. In particular, we learn illumination patterns to recover signals from coded diffraction patterns using a fixed-cost alternating minimization-based phase retrieval method. Coded diffraction phase retrieval is a physically realistic system in which the signal is first modulated by a sequence of codes before the sensor records its Fourier amplitude. We represent the phase retrieval method as an unrolled network with a fixed number of layers and minimize the recovery error by optimizing over the measurement parameters. Since the number of iterations/layers are fixed, the recovery runs under a fixed cost. We present extensive simulation results on a variety of datasets under different conditions and a comparison with existing methods. Our results demonstrate that the proposed method provides near-perfect reconstruction using patterns learned with a small number of training images. Our proposed method provides significant improvements over existing methods both in terms of accuracy and speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.