Impedance matching can maximize the absorbed power transferred to the plasma load and minimize the reflected power, making it critical and indispensable for capacitively coupled plasmas (CCPs). The external circuit usually interacts with the plasma nonlinearly, so the global simulation of the external circuit and plasma and the matching design is very challenging. In this work, an a priori model was proposed to match the plasma impedance and the external circuit impedance for single-frequency CCPs. By calculating the plasma impedance and the matching network, the matching parameters were iteratively updated to find the best matching parameters. By adjusting the capacitance and the inductance of the circuit by numerical simulations, the reflection coefficient can be significantly reduced. At the same time, the plasma power absorption efficiency will be significantly improved. The universality of the method was demonstrated by choosing different initial circuit, discharge, and plasma parameters. The proposed method provides an effective matching design reference for CCPs.
Radiofrequency (RF) coaxial cables are one of the vital components for the power sources of capacitively coupled plasmas (CCPs), by which the RF power is transferred to excite the plasma. Usually, the cables can be treated as transmission lines (TLs). However, few studies of TLs in CCP power sources were conducted due to the nonlinear coupling between TLs and the plasma. In this work, we developed a numerical scheme of TLs based on the Lax–Wendroff method and realized the nonlinear bidirectional coupling among the lumped-element model, transmission line model, and electrostatic particle-in-cell model. Based on the combined model, three discharge patterns were found, including weak matching state, normal state, and over matching state. The great differences among the three patterns indicated that the TLs could change the impedance matching of the device and significantly affect the plasma properties.
We present a new, to the best of our knowledge, simulation method for laser-induced breakdown spectroscopy during the plasma expansion phase in nonlocal thermodynamic equilibrium. Our method uses the particle-in-cell/Monte Carlo collision model to calculate dynamic processes and line intensity of nonequilibrium laser-induced plasma (LIP) in the afterglow phase. The effects of ambient gas pressure and type on LIP evolution are investigated. This simulation provides an added way to understand the nonequilibrium processes in more detail than the current fluid and collision radiation models. Our simulation results are compared with experimental and SimulatedLIBS package results and show good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.