This paper provided for the first time an experimental study on the influence of sea level rise on transport of contamination in the heterogeneous unconfined aquifer of the coastal zone. The experiments were conducted using the tank, considering the difference between sea level and inland head 1 cm for Case 1 and 2 cm for Case 2. Observed data were validated using the numerical model, which matched well with the toe length of seawater wedge and the shape of the contaminant plume. The results showed that the observed and simulated values of Cl− concentration at the sampling points increased sharply at the initial time, and then they increased slowly and tended to be stable. The seawater wedge migrated inland with time under the effects of the hydraulic gradient toward the inland and the density difference between saltwater and freshwater. The steady state length of the 50% isoline of the seawater wedge was 167 cm in Case 2, which was larger than that of Case 1. The maximum area of plume in Case 2 was 0.13 m2, larger than that in Case 1, which indicated that the velocity of diffusion of the contaminant plume increased as the sea level increased. As the velocity of diffusion increased, the time for pollutant migration to the intersection between seawater and freshwater became shorter. The maximum area and vertical depth of pollutant plume were sensitive to the hydraulic conductivity, dispersivity, and contamination concentration. The infiltration depth and range of the contaminant plume in the heterogeneous aquifer were greater than those in the homogeneous aquifer of the actual beach.
The coupled effect of seawater intrusion and inland freshwater recharge plays an important role in contamination transport in coastal heterogeneous aquifer. In this study, the effects of seawater intrusion and inland recharge on contamination transport were investigated by conducting laboratory experiments and numerical simulations. The laboratory tests were conducted in a sand tank considering two scenarios, namely the conditions of landward and seaward hydraulic gradients. The SEAWAT software was applied for validating the contaminant transport in coastal heterogeneous aquifer. The results indicated that the simulated seawater wedge and contours of the saltwater contaminant matched the observed ones well. The length of the seawater wedge in the scenario of seaward hydraulic gradient was smaller than that in the scenario of landward hydraulic gradient, which reflected that the large quantity of inland recharge have a negative effect on the invasion process of seawater. The plume moved mainly downward in the heterogeneous unconfined aquifer for both scenarios. The pollution plume became concave at the interface between each two layers, which was because the velocity of contaminant plume migration increased gradually from the upper layer to lower layer. The migration direction of the front of the plume was consistent with the direction of hydraulic gradient, which indicated that it was influenced by the water flowing. The maximum area of plume in the scenario of seaward hydraulic gradient was slightly smaller than that in the scenario of landward hydraulic gradient. The maximum area and vertical depth of the pollutant plume were sensitive to the hydraulic conductivity, dispersivity and contamination concentration. This study was of great significance to the controlling of pollution and utilization of freshwater resources in coastal areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.