For a lower semicontinuous function f on a Banach space X, we study the existence of a positive scalar µ such that the distance function d S associated with the solution set S of f (x) ≤ 0 satisfies d S (x) ≤ µ max{f (x), 0} for each point x in a neighborhood of some point x 0 in X with f (x) < for some 0 < ≤ +∞. We give several sufficient conditions for this in terms of an abstract subdifferential and the Dini derivatives of f. In a Hilbert space we further present some second-order conditions. We also establish the corresponding results for a system of inequalities, equalities, and an abstract constraint set.
For a lower semicontinuous (l.s.c.) inequality system on a Banach space, it is shown that error bounds hold, provided every element in an abstract subdifferential of the constraint function at each point outside the solution set is norm bounded away from zero. A sufficient condition for a global error bound to exist is also given for an l.s.c. inequality system on a real normed linear space. It turns out that a global error bound closely relates to metric regularity, which is useful for presenting sufficient conditions for an l.s.c. system to be regular at sets. Under the generalized Slater condition, a continuous convex system on R n is proved to be metrically regular at bounded sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.