The premise of vehicle intelligent decision making is to obtain vehicle motion state parameters accurately and in real-time. Several state parameters cannot be measured directly by vehicle sensors, so estimation algorithms based on filtering are effective solutions. The most representative algorithm is the Kalman filter, especially the standard unscented Kalman filter (UKF) that has been widely used in vehicle state estimation because of its superiority in dealing with nonlinear filtering problems. However, although the UKF assumes that the noise statistics of the system are known, due to the complex and changeable operating conditions, sensor aging and other factors, these noises vary. In order to realize high-precision vehicle state estimation, a noise-adaptive UKF algorithm is proposed in this article. The maximum a posteriori (MAP) algorithm is used to dynamically update the noise of the vehicle system, and it is embedded into the update step of the UKF to form an adaptive unscented Kalman filter (AUKF). The system will dynamically update the noise when noise statistics are unknown and prevent filter divergence by adjusting the mean and covariance of the estimated noise to improve accuracy. On this basis, the proposed method is verified by the joint simulation of CarSim and Matlab/Simulink, confirming that the AUKF performs better than the standard UKF in estimation accuracy and stability under different degrees of noise disturbance, and the estimation accuracy for the yaw rate, side slip angle and longitudinal velocity is improved by 20.08%, 40.98% and 89.91%, respectively.
Aiming at the impact of heat generation and temperature rise on the driving performance of a permanent magnet (PM) motor, taking the PM in-wheel motor (IWM) for electric vehicles as an object, research is conducted into the temperature distribution of the electromagnetic–thermal effect and cooling structure optimization. Firstly, the electromagnetic–thermal coupling model considering electromagnetic harmonics is established using the subdomain model and Bertotti’s iron loss separation theory. Combined with the finite element (FE) simulation model established by Ansoft Maxwell software platform, the winding copper loss, stator core loss and PM eddy current loss under the action of complex magnetic flux are analyzed, and the transient temperature distribution of each component is obtained through coupling. Secondarily, the influence of the waterway structure parameters on the heat dissipation effect of the PM-IWM is analyzed by the thermal-fluid coupled relationship. On the basis, the optimization design of waterway structure parameters is carried out to improve the heat dissipation effect of the cooling system based on the proposed chaotic mapping ant colony algorithm with metropolis criterion. The comparison before and after optimization shows that the temperature of key components is significantly improved, the average convection heat transfer coefficient (CHTC) is increased by 23.57%, the peak temperature of stator is reduced from 95.47 °C to 82.73 °C, and the peak temperature of PM is decreased by 14.26%, thus the demagnetization risk in the PM is improved comprehensively. The research results can provide some theoretical and technical support for the structural optimization of water-cooled dissipation in the PM motor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.