A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency.
A stable drug release system with magnetic targeting is essential in a drug delivery system. In the present work, layered double hydroxide assemblies stabilized by layer-by-layer polymer multilayers were prepared by alternative deposition of poly(allylamine hydrochloride) and poly(acrylic acid) species on composite particles of Fe3O4 and ZnAl-LDH and then covalent cross-linkage of the polymer multilayers by photosensitive cross-linker. The successful fabrication was recorded by Zeta potential and Fourier transform infrared spectrum measurements. The formed assemblies were stable in high pH solutions (pH > 7). The drug loading capacity and release behavior of the assemblies could be controlled by treatment with appropriate acidic solution, and were confirmed by loading and release of a simulated drug, methylene blue. The formed assemblies possessed enough saturated magnetic strength and were sensitive to external magnetic field which was essential for targeting drug delivery. The formed assemblies were multifunctional assemblies with great potential as drug delivery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.