Background: Coronavirus disease 2019 (COVID-19) is a novel infectious disease of multi-system involvement with significant pulmonary manifestations. So far, many prognostic models have been introduced to guide treatment and resource management. However, data on the impact of measurable respiratory parameters associated with the disease are scarce. Objective: To demonstrate the role of Comorbidity-Age-Lymphocyte count-Lactate dehydrogenase (CALL) score and to introduce Respiratory Assessment Scoring (RAS) model in predicting disease progression and mortality in COVID-19. Methodology: Data of 252 confirmed COVID-19 patients were collected at Pak Emirates Military Hospital (PEMH) from 10th April 2020 to 31st August 2020. The CALL score and proposed factors of RAS model, namely respiratory rate, oxygen saturation at rest, alveolar arterial gradient and minimal exercise desaturation test, were calculated on the day of admission. Progression of disease was defined and correlated with measured variables. Univariate and multivariate Cox regression analysis for each variable, its hazard ratio (HR) and 95% confidence interval (CI) were calculated, and a nomogram was made using the high-risk respiratory parameters to establish the RAS model. Results: Progression of disease and death was observed in 124 (49.2%) and 49 (19.4%) patients, respectively. Presence of more than 50% of chest infiltrates was significantly associated with worsening disease and death (p-value <0.001). Death was observed in 100% of patients who had critical disease category on presentation. Regression analysis showed that the presence of comorbidity (n: 180), in contrast to other variables of CALL score, was not a good prognosticator of disease severity (p-value: 0.565). Nonetheless, the CALL model itself was validated to be a reliable prognostic indicator of disease progression and mortality. Some 10 feet oxygen desaturation test (HR: 0.99, 95%CI: 0.95-1.04, p-value: 0.706) was not a powerful predictor of the progression of disease. However, respiratory rate of more than 30 breaths/minute (b/m) (HR: 3.03, 95%CI: 1.77-5.19), resting oxygen saturation of less than 90% (HR: 2.41, 95%CI: 1.15-5.06), and an elevated alveolar-arterial oxygen gradient (HR: 2.14, 95%CI: 1.04-4.39) were considered statistically significant highrisk predictors of disease progression and death, in the formed RAS model. The model resulted in 85% (95%CI: 80%-89%) of area under the receiver operating characteristic curve (AUROC), with substantial positive (76%, 95%CI: 68%-83%) and negative predictive values (80%, 95%CI: 73%-87%) for a cutoff value of seven. Patients with higher CALL and RAS scores also resulted in higher mortality. Conclusion: CALL and RAS scores were strongly associated with progression and mortality in patients with COVID-19.
BackgroundHydroxychloroquine (HCQ) has been considered for the treatment of coronavirus disease 2019 , but data on its efficacy are conflicting. We analyzed the efficacy of HCQ along with standard of care (SOC) treatment, compared with SOC alone, in reducing disease progression in mild COVID-19. MethodsA single-center open-label randomized controlled trial was conducted from April 10 to May 31, 2020 at Pak Emirates Military Hospital, Rawalpindi. Five hundred patients of both genders between the ages of 18 and 80 years with mild COVID-19 were enrolled in the study. A total of 349 patients were assigned to the intervention group (standard dose of HCQ plus SOC) and 151 patients were assigned to SOC only. The primary outcome was progression of disease while secondary outcome was polymerase chain reaction (PCR) negativity on days 7 and 14. The results were analyzed on Statistical Package for Social Sciences (SPSS; IBM Corp., Armonk, NY) version 23. A p-value <0.05 was considered significant. ResultsThe median age of the intervention group was 34 ± 11.778 years and control group was 34 ± 9.813 years. Disease progressed in 16 patients, 11 (3.15%) of which were in the intervention group and 5 (3.3%) in the control group (p-value = 0.940). PCR negative cases in intervention and control groups on day 7 were 182 (52.1%) and 54 (35.8%), respectively (p-value = 0.001); and on day 14 were 244 (69.9%) and 110 (72.9%), respectively (p-value = 0.508). Consecutive PCR negativity on days 7 and 14 was observed in 240 (68.8%) patients in the intervention group compared to 106 (70.2%) in the control group (p-value = 0.321). ConclusionThe addition of HCQ to SOC in hospitalized mild COVID-19 patients neither stops disease progression nor helps in early and sustained viral clearance.
Importance: Cytokine release storm (CRS) plays pivotal role in pathophysiology and progression of COVID-19. Objective: To evaluate the outcomes of COVID-19 patients having CRS treated with Therapeutic Plasma Exchange (TPE) as compared to controls not receiving TPE. Design: Retrospective propensity score (PS) matched analysis, 1st April to 30th June 2020. Setting: Tertiary care hospital, single centre based. Participants: Using PS 1:1 matching, 90 patients were assigned 2 groups (45 receiving TPE and 45 controls). Forced matching and covariate matching was done to overcome bias between two groups. Main outcomes and measures: Primary outcome was 28 days overall survival. Secondary outcomes were duration of hospitalization, CRS resolution time and timing of PCR negativity. Results: Median age was 60 years (range 32-73 in TPE, 37-75 in non-TPE group), p= 0.325. Median symptoms duration 7 days (range 3-22 days TPE and 3-20 days non-TPE), p=0.266. Disease severity in both groups was 6.6% moderate, 44.4% severe and 49% critical. Twenty-eight-day survival was significantly superior in TPE group (91.1%) as compared to controls (61.5%), HR 0.21, 95% CI for HR 0.09-0.53, log rank 0.002. Median duration of hospitalization was significantly reduced in TPE treated group as compared to non-TPE controls 10 days and 15 days respectively (p< 0.01). CRS resolution time was also significantly reduced in TPE treated group (6 days vs. 12 days) (p< 0.001). Conclusion and Relevance: Use of TPE is associated with superior overall survival, early CRS resolution and time to discharge as compared to standard therapy for COVID-19 triggered CRS.
The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was isolated in 2012 and is well known to cause the respiratory syndrome. The orf1ab gene is known to mediate MERS-CoV replication. In this study, we have discussed the in silico prediction of potential siRNAs targeting MERS-CoV-orf1ab gene for antiviral therapeutics. To identify the potential siRNAs, various factors were considered. We have excluded the siRNAs with off-target effects and potential binding with human mRNAs. By using available softwares, total twenty-one functional, off-target reduced potential siRNA were selected from four hundred and sixty-two siRNAs based on greater potency and specificity. We have tested only seven siRNAs initially to evaluate their performance by reverse transfection approach by lipofectamine mediated delivery in Vero cells. The evaluation results showed no cytotoxicity at various concentrations of siRNAs used. The results obtained in this study provided preliminary information about the cytotoxicity which will help us to further evaluate siRNAs in other cell cultures to find out the replication inhibition efficiency of MERS-CoV. Finally, it is concluded that the in silico prediction and designing resulted in filtration and selection of potential siRNAs with high accuracy, efficiency, and strength which can be further utilized for the development of oligonucleotide-based therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.