Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual Leucine zipper MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology, but also axon regeneration, by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer binding proteins, via its 3′ UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and that axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration.
Axons of adult Caenorhabditis elegans neurons undergo robust regenerative growth after laser axotomy. Here we show that axotomy of PLM sensory neurons triggers axonal calcium waves whose amplitude correlates with the extent of regeneration. Genetic elevation of Ca2+ or cAMP accelerates formation of a growth cone from the injured axon. Elevated Ca2+ or cAMP also facilitates apparent fusion of axonal fragments and promotes branching to postsynaptic targets. Conversely, inhibition of voltage-gated calcium channels or calcium release from internal stores reduces regenerative growth. We identify the fusogen EFF-1 as critical for axon fragment fusion and the basic leucine zipper domain (bZip) protein CREB (cAMP response element-binding protein) as a key effector for branching. The effects of elevated Ca2+ or cAMP on regrowth require the MAPKKK(mitogen-activated protein kinase kinase kinase) DLK-1. Increased cAMP signaling can partly bypass the requirement for the bZip protein CEBP-1, a downstream factor of the DLK-1 kinase cascade. These findings reveal the relationship between Ca2+/cAMP signaling and the DLK-1 MAPK (mitogen-activated protein kinase) cascade in regeneration.
We previously reported functional regeneration of Caenorhabditis elegans motor neurons after femtosecond laser axotomy. We report here that multiple neuronal types can regrow after laser axotomy using a variety of lasers. The precise pattern of regrowth varies with cell type, stage of animal, and position of axotomy. Mechanosensory axons cut in late larval or adult stages displayed extensive regrowth, yet failed to reach their target area because of guidance errors in the anteroposterior axis. By contrast, mechanosensory axons cut in early larval stages regrew at the same rate but with fewer anteroposterior guidance errors, and were more likely to reach their target area. In adult animals lacking the VAB-1 Eph receptor tyrosine kinase, mechanosensory axon regrowth was more accurate than in the wild type, suggesting that guidance errors of regrowing touch neuron axons are the result of Eph signaling. Kinase-dependent and kinase-independent Eph signaling influenced outgrowth and guidance of regrowing touch neurons, respectively. Mechanosensory neurons regrew when severed proximal to their collateral synaptic branch but did not regrow when severed distal to the branch point. However, the distal axon could regrow if the branch is removed surgically at the same time as distal axotomy, or at a later time. The touch neuron synaptic branch point may act as a sorting area to regulate growth. These findings reveal that multiple influences affect regenerative growth in C. elegans neurons. axotomy ͉ laser ͉ femtosecond laser ͉ microsurgery
Summary The mechanisms underlying the ability of axons to regrow after injury remain poorly explored at the molecular genetic level. We used a laser injury model in Caenorhabditis elegans mechanosensory neurons to screen 654 conserved genes for regulators of axonal regrowth. We uncover several functional clusters of genes that promote or repress regrowth, including genes classically known to affect membrane excitability, neurotransmission, and synaptic vesicle endocytosis. The conserved Arf Guanine nucleotide Exchange Factor (GEF), EFA-6, acts as an intrinsic inhibitor of regrowth. By combining genetics and in vivo imaging we show that EFA-6 inhibits regrowth via microtubule dynamics, independent of its Arf GEF activity. Among newly identified regrowth inhibitors, only loss of function in EFA-6 partially bypasses the requirement for DLK-1 kinase. Identification of these pathways significantly expands our understanding of the genetic basis of axonal injury responses and repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.