Event camera has offered promising alternative for visual perception, especially in high speed and high dynamic range scenes. Recently, many deep learning methods have shown great success in providing model-free solutions to many event-based problems, such as optical flow estimation. However, existing deep learning methods did not address the importance of temporal information well from the perspective of architecture design and cannot effectively extract spatio-temporal features. Another line of research that utilizes Spiking Neural Network suffers from training issues for deeper architecture. To address these points, a novel input representation is proposed that captures the events temporal distribution for signal enhancement. Moreover, we introduce a spatio-temporal recurrent encoding-decoding neural network architecture for event-based optical flow estimation, which utilizes Convolutional Gated Recurrent Units to extract feature maps from a series of event images. Besides, our architecture allows some traditional frame-based core modules, such as correlation layer and iterative residual refine scheme, to be incorporated. The network is end-to-end trained with self-supervised learning on the Multi-Vehicle Stereo Event Camera dataset. We have shown that it outperforms all the existing state-of-the-art methods by a large margin.
Communication lays the foundation for human cooperation. It is also crucial for multi-agent cooperation. However, existing work focuses on broadcast communication, which is not only impractical but also leads to information redundancy that could even impair the learning process. To tackle these difficulties, we propose Individually Inferred Communication (I2C), a simple yet effective model to enable agents to learn a prior for agent-agent communication. The prior knowledge is learned via causal inference and realized by a feed-forward neural network that maps the agent's local observation to a belief about who to communicate with. The influence of one agent on another is inferred via the joint action-value function in multi-agent reinforcement learning and quantified to label the necessity of agent-agent communication. Furthermore, the agent policy is regularized to better exploit communicated messages. Empirically, we show that I2C can not only reduce communication overhead but also improve the performance in a variety of multi-agent cooperative scenarios, comparing to existing methods.Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.