This paper reports the nanoscale texture and microstructure of a high-performance NdFeAs(O,F) superconducting thin film grown by molecular beam epitaxy on a textured MgO/Y 2 O 3 /Hastelloy substrate. The NdFeAs(O,F) film forms a highly textured columnar grain structure by epitaxial growth on the MgO template. Although the film contains stacking faults along the abplane as well as grain boundaries perpendicular to the ab-plane, good superconducting properties are measured: a critical temperature, T c , of 46 K and a self-field critical current density, J c , of 2 × 10 6 A/cm 2 at 4.2 K. Automated crystal orientation mapping by scanning precession electron diffraction in transmission electron microscope is employed to analyze the misorientation angles between adjacent grains in a large ensemble (247 grains), and 99% of the grain boundaries show in-plane misorientation angles (Δγ) less than the critical angle θ c , which satisfies one of the necessary conditions for the high J c . Comparing the columnar grain size distribution with the mean distance of the flux line lattice, the triple junctions of low-angle grain boundaries are found to be effective pinning centers, even at high temperatures (≥35 K) and/or low magnetic fields.
The most effective way to enhance the dissipation-free supercurrent in the presence of a magnetic field for type II superconductors is to introduce defects that act as artificial pinning centers (APCs) for vortices. For instance, the in-field critical current density of doped BaFe2As2 (Ba122), one of the most technologically important Fe-based superconductors, has been improved over the last decade by APCs created by ion irradiation. The technique of ion irradiation has been commonly implemented to determine the ultimate superconducting properties. However, this method is rather complicated and expensive. Here, we report a surprisingly high critical current density and strong pinning efficiency close to the crystallographic c-axis for a K-doped Ba122 epitaxial thin film without APCs, achieving performance comparable to ion-irradiated K-doped Ba122 single crystals. Microstructural analysis reveals that the film is composed of columnar grains with widths of approximately 30–60 nm. The grains are rotated around the b- (or a-) axis by 1.5° and around the c-axis by −1°, resulting in the formation of low-angle grain boundary networks. This study demonstrates that the upper limit of in-field properties reached in ion-irradiated K-doped Ba122 is achievable by grain boundary engineering, which is a simple and industrially scalable manner.
Molecular beam epitaxy of K-doped Ba122 (Ba1−x
K
x
Fe2As2) superconductor was realized on an MgO substrate. Microstructural observation revealed that the undoped Ba122 served as a perfect buffer layer for epitaxial growth of the K-doped Ba122. The film exhibited a high critical temperature of 39.8 K and a high critical current density of 3.9 MA/cm2 at 4 K. The successful growth of epitaxial thin film will enable artificial single grain boundary on oxide bicrystal substrates and reveal the grain boundary transport nature of K-doped Ba122.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.