Paper recommendation has become an increasingly important yet challenging task due to the rapidly expanding volume and scope of publications in the broad research community. Due to the lack of user profiles in public digital libraries, most existing methods for paper recommendation are through paper similarity measurements based on citations or contents, and still suffer from various performance issues. In this paper, we construct a graphical form of citation relations to identify relevant papers and design a hybrid recommendation model that combines both citationand content-based approaches to measure paper similarities. Considering that citations at different locations in one article are likely of different significance, we define a concept of citation similarity with varying weights according to the sections of citations. We evaluate the performance of our recommendation method using Spearman correlation on real publication data from public digital libraries such as CiteSeer and Wanfang. Extensive experimental results show that the proposed hybrid method exhibits better performance than state-of-the-art techniques, and achieves 40% higher recommendation accuracy in average in comparison with citation-based approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.