In this paper, we synergistically combine electrohydrodynamic (EHD) printing and replica molding for the fabrication of microlenses. Glycerol solution microdroplets was sprayed onto the ITO glass to form liquid mold by an EHD printing process. The liquid mold is used as a master to fabricate a polydimethylsiloxane (PDMS) mold. Finally, the desired micro-optical device can be fabricated on any substrate using a PDMS soft lithography mold. We demonstrate our strategy by generating microlenses of photocurable polymers and by characterizing their optical properties. It is a new method to rapidly and cost-effectively fabricate molds with small diameters by exploiting the advantages of EHD printing, while maintaining the parallel nature of soft-lithography.
The non-contact infrared body temperature detection and RFID technology access control design uses 51 single-chip microcomputer as the core main control module, which combines infrared temperature measurement function (GY-MLX90614 sensor) and radio frequency (MFRC522) card swipe access control system, through swiping card and temperature measurement together control the door opening and closing. When it works in the high-risk zone mode, it detects the body temperature while swiping the card. If the body temperature is normal, the door opens, if the body temperature is abnormal, the door does not open and the buzzer sounds; when working in the low-risk mode, if the body temperature is normal, the door opens, If the body temperature is abnormal, the door opens and the buzzer sounds. Finally, it inputs the obtained card information and body temperature data to the WiFi circuit (ESP8266) through the serial port, and uses it as a hotspot to connect to the mobile device to realize data transmission, so as to realize more efficient unmanned management in different areas during the epidemic.
Borosilicate bioactive glass has excellent bioactivity and bone conductivity, but most bioactive glasses exhibit nonlinear degradation and mineralization behavior, with mineralization property declining over time. The DC electric field, as an outfield-assisted approach to regulation, can interfere in the ion exchange and diffusion of the glass to modify its property. In this study, a DC electric field is used to intervene in vitro mineralization of borosilicate bioactive glass to accelerate the bioactivity in the slower degradation phase. Borosilicate bioactive glass with the composition of 18SiO2-6Na2O-8K2O-8MgO-22CaO-2P2O5-36B2O3, prepared by the melting method, was immersed in simulated body fluid (SBF). A current in range of 0-90 mA was applied to study the effect of DC electric field on the degradation and in vitro mineralization property of borosilicate bioactive glass. The results show that the application of electric field increases the degradation rate and ion release of borosilicate bioactive glass. Compared to the control group (without electric field), the weight loss rate increased by 3%-5% and the dissolution of B and Ca ions increased by 2.3-2.9 times and 1.9-2.3 times, respectively. Meanwhile, the electric field assists glass network hydrolysis and surface hydroxylation, accelerating the generation of hydroxyapatite (HA). Analyzing the surface structure of the borosilicate bioactive glass particles, we found that an apatite layer was formed on the surface of the sample exposed to the electric field. Hence, the application of a DC electric field can improve the degradation and in vitro mineralization property of bioactive glass, providing a new idea for bone repair effect enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.