Heterogeneous multiprocessor systems, which are composed of a mix of processing elements, such as commodity multicore processors, graphics processing units (GPUs), and others, have been widely used in scientific computing community. Software applications incorporate the code designed and optimized for different types of processing elements in order to exploit the computing power of such heterogeneous computing systems. In this paper, we consider the problem of optimal distribution of the workload of data-parallel scientific applications between processing elements of such heterogeneous computing systems. We present a solution that uses functional performance models (FPMs) of processing elements and FPM-based data partitioning algorithms. Efficiency of this approach is demonstrated by experiments with parallel matrix multiplication and numerical simulation of lid-driven cavity flow on hybrid servers and clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.