Background Passiflora edulis , known as passion fruit and native to South America, is now widely cultivated throughout southern China for its edible value, medicinal efficacy and ornamental properties. We have developed a cold-tolerant variety of P. edulis (‘Pingtang 1’) that can survive subzero temperatures and is highly adaptable in Karst areas. In this study, cuttings of ‘Pingtang 1’ were cultivated in a limestone (L) rocky desertification area and a sandy dolomite (D) rock desertification area. Changes in nutrient elements in both the soils and plants were revealed in the two plots. Moreover, RNA sequencing (RNA-Seq) was performed to profile the root transcriptomes for further exploration of nutrient adaptative mechanism of Passiflora edulis in Karst regions. Results In this study, a total of, 244,705,162 clean reads were generated from four cDNA libraries and assembled into 84,198 unigenes, of which 56,962 were annotated by publicly available databases. Transcriptome profiles were generated, and 1314 unigenes (531 upregulated and 801 downregulated) were significantly differentially expressed between the L and D root cDNA libraries (L_R and D_R, respectively); these profiles provide a global overview of the gene expression patterns associated with P. edulis adaptability to Karst soils. Most unigenes including a number of differentially expressed genes (DEGs) were involved in nutrient element uptake, utilization, signal regulation. And DEGs enriched in KEGG pathways of plant hormone signal transduction, phenylpropanoid biosynthesis, and biosynthesis of unsaturated fatty acids were significantly expressed. Conclusion These results could contribute to better understanding the adaptation of this species to environmental stress and thus enhance the potential for successfully introducing and commercially deploying P. edulis . Electronic supplementary material The online version of this article (10.1186/s12870-019-1797-8) contains supplementary material, which is available to authorized users.
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules, which transmit environmental signals in plant cells through stepwise phosphorylation and play indispensable roles in a wide range of physiological and biochemical processes. Here, we isolated and characterized a gene encoding MKK2 protein from poplar through the rapid amplification of cDNA ends (RACE). The full-length PeMKK2a gene was 1571 bp, including a 1068 bp open reading frame (ORF) encoding 355 amino acids, and the putative PeMKK2a protein belongs to the PKc_like (protein kinase domain) family (70–336 amino acids) in the PKc_MAPKK_plant subfamily and contains 62 sites of possible phosphorylation and two conserved domains, DLK and S/T-xxxxx-S/T. Detailed information about its gene structure, sequence similarities, subcellular localization, and transcript profiles under salt-stress conditions was revealed. Transgenic poplar lines overexpressing PeMKK2a exhibited higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) than non-transgenic poplar under salt stress conditions. These results will provide insight into the roles of MAPK signaling cascades in poplar response to salt stress.
With its unique square-shaped culm, Chimonobambusa hirtinoda C.S. Chao & K.M. Lan is a critically endangered species, and its natural habitat is solely restricted to Doupeng Mountain in Guizhou, China. Two small-insert libraries from C. hirtinoda were constructed and sequenced. Approximately 127.83 Gb of highquality reads were generated and assembled into 9,320,997 contigs with a N50 length of 213bp, thereby producing 8,867,344 scaffolds with total length of 2.01 Gb. An estimated genome size of C. hirtinode was 2.86 Gb on the basis of k-mer frequency analysis, with the GC content of 45.40%. The repeat rate and heterozygous ratio were 74.11 and 1.48% in C. hirtinoda genome, respectively. Finally, 65,398 SSR loci were identified in the assembled contigs, including 58.66% tri-nucleotide, 27.42% di-nucleotide, 7.94% tetranucleotide, 3.67% penta-nucleotide, and 2.31% hexa-nucleotide. Results of this study are useful not only for ecological conservation of C. hirtinoda, but also for phylogenetic studies.
Chemically labile ester linkages can be introduced into lignin by incorporation of monolignol conjugates, which are synthesized in planta by acyltransferases that use a coenzyme A (CoA) thioester donor and a nucleophilic monolignol alcohol acceptor. The presence of these esters facilitates processing and aids in the valorization of renewable biomass feedstocks. However, the effectiveness of this strategy is potentially limited by the low steady-state levels of aromatic acid thioester donors in plants.As part of an effort to overcome this, aromatic acid CoA ligases involved in microbial aromatic degradation were identified and screened against a broad panel of substituted cinnamic and benzoic acids involved in plant lignification. Functional fingerprinting of this ligase library identified four robust, highly active enzymes capable of facile, rapid, and high-yield synthesis of aromatic acid CoA thioesters under mild aqueous reaction conditions mimicking in planta activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.