Network attacks (i.e., man-in-the-middle (MTM) and denial of service (DoS) attacks) allow several attackers to obtain and steal important data from physical connected devices in any network. This research used several machine learning algorithms to prevent these attacks and protect the devices by obtaining related datasets from the Kaggle website for MTM and DoS attacks. After obtaining the dataset, this research applied preprocessing techniques like fill the missing values, because this dataset contains a lot of null values. Then we used four machine learning algorithms to detect these attacks: random forest (RF), eXtreme gradient boosting (XGBoost), gradient boosting (GB), and decision tree (DT). To assess the performance of the algorithms, there are many classification metrics are used: precision, accuracy, recall, and f1-score. The research achieved the following results in both datasets: i) all algorithms can detect the MTM attack with the same performance, which is greater than 99% in all metrics; and ii) all algorithms can detect the DoS attack with the same performance, which is greater than 97% in all metrics. Results showed that these algorithms can detect MTM and DoS attacks very well, which is prompting us to use their effectiveness in protecting devices from these attacks.
In response to user demand for wearable devices, several WBAN deployments now call for effective communication processes for remote data monitoring in real time. Using sensor networks, intelligent wearable devices have exchanged data that has benefited in the evaluation of possible security hazards. If smart wearables in sensor networks use an excessive amount of power during data transmission, both network lifetime and data transmission performance may suffer. Despite the network's effective data transmission, smart wearable patches include data that has been combined from several sources utilizing common aggregators. Data analysis requires careful network lifespan control throughout the aggregation phase. By using the Nomadic People Optimizer-based Energy-Efficient Routing (NPO-EER) approach, which effectively allows smart wearable patches by minimizing data aggregation time and eliminating routing loops, the network lifetime has been preserved in this research. The obtained findings showed that the NPO method had a great solution. Estimated Aggregation time, Energy consumption, Delay, and throughput have all been shown to be accurate indicators of the system's performance.
This paper proposes a new card game and dealing system, designed specifically for poker games. The proposed method benefits from two poker characteristics games that are ignored by public card systems. First, cards are dealt in poker games in the form of rounds, betting with them, instead of all at once. Second, the total number of cards dealt in poker game cards is depending on the number of players but is usually less than half the total. With these remarks in mind, the proposed method distributes the computing cost of dealing cards evenly across the rounds. Compared to systems that provide a full introduction to the deck, the proposed approach provides a significant reduction in the total cost of computing. Also, it’s fair and strong. It perfectly fits hardware such as smartphones. The presented system is fast and secure mental poker protocol. It is twice as fast as similar protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.