Landslides involving sensitive clays are recurrent events in the world's northern regions and are especially notorious in eastern Canada. The two critical factors that separate sensitive clay landslides from traditional slope stability analysis are the highly brittle behavior in undrained conditions (strain-softening) characteristic of progressive or retrogressive failures and the large deformations associated with them. Conventional limit equilibrium analysis has numerous shortcomings in incorporating these characteristics when assessing landslides in sensitive clays. This paper presents an extensive literature review of the failure mechanics characteristics of landslides in sensitive clays and the existing constitutive models and numerical tools to analyze such slopes' stability and post-failure behavior. The advantages and shortcomings of the different techniques to incorporate strain-softening and large deformation in the numerical modeling of sensitive clay landslides are assessed. The literature review depicts that elastoviscoplastic soil models with non-linear strain-softening laws and rate effects represent the material behavior of sensitive clays. Though several numerical models have been proposed to analyze post-failure runouts, the amount of work performed in line with sensitive clay landslides is very scarce. That creates an urgent need to apply and further develop advanced numerical tools for better understanding and predicting these catastrophic events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.