Mentha haplocalyx has been widely used for its flavoring and medicinal properties and as a traditional Chinese medicine with its anti-inflammation properties. The present study was designed to investigate the anti-inflammatory effects and potential molecular mechanisms of the phenolic fraction of M. haplocalyx (MHP) and its constituent linarin in lipopolysaccharide (LPS)-induced RAW264.7 cells. The high-performance liquid chromatography coupled with linear ion trap-orbitrap mass spectrometry (HPLC-LTQ-Orbitrap MS) was used to analyze the chemical composition of MHP. Using the enzyme-linked immunosorbent assay (ELISA) and quantitative realtime polymerase chain reaction (qRT-PCR), the expression of pro-inflammatory meditators and cytokines was measured at the transcriptional and translational levels. Western blot analysis was used to further investigate changes in the nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and Akt signaling pathways. Fourteen phenolic constituents were identified from MHP based on the data of the mass spectrometry (MS)/MS analysis. MHP and linarin decreased the production of NO, tumor necrosis factor-α (TNF-α), interlenkin-1β (IL-1β), and IL-6. The messenger ribonucleic acid (mRNA) expression levels of inducible NO synthase (iNOS), TNF-α, IL-1β, and IL-6 were also suppressed by MHP and linarin. Further investigation showed that MHP and linarin down-regulated LPS-induced phosphorylation content of NF-κB p65, inhibitor kappa B α (IκBα), extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38. However, MHP and linarin showed no inhibitory effect on the phosphorylated Akt. These results suggested that MHP and linarin exerted a potent inhibitory effect on pro-inflammatory meditator and cytokines production via the inactivation of NF-κB and MAPKs, and they may serve as potential modulatory agents for the prevention and treatment of inflammatory diseases.
Objective: It has been documented that ezrin/radixin/moesin (ERM) phosphorylation by the p38 mitogen-activated protein kinase (MAPK), Rho/ROCK, and protein kinase C (PKC) pathways leads to filamentous actin (F-actin) reorganization and microvascular endothelial cell hyperpermeability. In this study, we investigated the effects of Xijiao Dihuang Decoction combined with Yinqiao Powder (XDY) on influenza virus (IV)-induced F-actin restructuring and ERM phosphorylation regulated by the Rho/Rho kinase 1 (ROCK), p38 MAPK, and PKC signaling pathways in pulmonary microvascular endothelial cells (PMVECs). Methods: Serum containing XDY (XDY-CS; 13.8 g/kg) was acquired using standard protocols for serum pharmacology. Primary PMVECs were obtained from male Wistar rats and cultured. After adsorption of IV A (multiplicity of infection, 0.01) for 1 h, medium with 20% XDY-CS was added to the PMVECs. The distributions of F-actin and phosphorylated ERM were determined by confocal microscopy, and F-actin expression was measured by flow cytometry. The expression levels of ROCK1, phosphorylated myosin phosphatase target-subunit
Severe influenza infections are featured by acute lung injury, a syndrome of increased pulmonary microvascular permeability. A growing number of evidences have shown that influenza A virus induces cytoskeletal rearrangement and permeability increase in endothelial cells. Although miRNA’s involvement in the regulation of influenza virus infection and endothelial cell (EC) function has been well documented, little is known about the miRNA profiles in influenza-infected endothelial cells. Using human umbilical vein endothelial cells (HUVECs) as cell models, the present study aims to explore the differential miRNAs in influenza virus-infected ECs and analyze their target genes involved in EC permeability regulation. As the results showed, permeability increased and F-actin cytoskeleton reorganized after HUVECs infected with influenza A virus (CA07 or PR8) at 30 MOI. MicroRNA microarray revealed a multitude of miRNAs differentially expressed in HUVECs after influenza virus infection. Through target gene prediction, we found that a series of miRNAs were involved in PKC, Rho/ROCK, HRas/Raf/MEK/ERK, and Ca2+/CaM pathways associated with permeability regulation, and most of these miRNAs were down-regulated after flu infection. It has been reported that PKC, Rho/ROCK, HRas/Raf/MEK/ERK, and Ca2+/CaM pathways are activated by flu infection and play important roles in permeability regulation. Therefore, the cumulative effects of these down-regulated miRNAs which synergistically enhanced activation of PKC, Rho/ROCK, Ras/Raf/MEK/ERK, and Ca2+/CaM pathways, can eventually lead to actin rearrangement and hyperpermeability in flu-infected HUVECs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.