Disintegration of nuclear DNA into high molecular weight (HMW) and oligonucleosomal DNA fragments represents two major periodicities of DNA fragmentation during apoptosis. These are thought to originate from the excision of DNA loop domains and from the cleavage of nuclear DNA at the internucleosomal positions, respectively. In this report, we demonstrate that different apoptotic insults induced apoptosis in NB-2a neuroblastoma cells that was invariably accompanied by the formation of HMW DNA fragments of about 50 -100 kb but proceeded either with or without oligonucleosomal DNA cleavage, depending on the type of apoptotic inducer. We demonstrate that differences in the pattern of DNA fragmentation were reproducible in a cell-free apoptotic system and develop conditions that allow in vitro separation of the HMW and oligonucleosomal DNA fragmentation activities. In contrast to apoptosis associated with oligonucleosomal DNA fragmentation, the HMW DNA cleavage in apoptotic cells was accompanied by down-regulation of caspase-activated DNase (CAD) and was not affected by z-VAD-fmk, suggesting that the caspase/CAD pathway is not involved in the excision of DNA loop domains. We further demonstrate that nonapoptotic NB-2a cells contain a constitutively present nuclease activity located in the nuclear matrix fraction that possessed the properties of topoisomerase (topo) II and was capable of reproducing the pattern of HMW DNA cleavage that occurred in apoptotic cells. We demonstrate that the early stages of apoptosis induced by different stimuli were accompanied by activation of topo II-mediated HMW DNA cleavage that was reversible after removal of apoptotic inducers, and we present evidence of the involvement of topo II in the formation of HMW DNA fragments at the advanced stages of apoptosis. The results suggest that topo II is involved in caspase-independent excision of DNA loop domains during apoptosis, and this represents an alternative pathway of apoptotic DNA disintegration from CAD-driven caspase-dependent oligonucleosomal DNA cleavage.At the higher level of chromatin compaction, nuclear DNA is arranged into loop domains by periodical attachment of the chromatin fiber to the nuclear matrix (1, 2). The domain level of chromatin organization is supported by the interaction of specific DNA sequences, matrix/scaffold attachment regions, with nuclear matrix proteins (3). The chromatin loops represent the basic structural components of higher-order chromatin folding, which is maintained during the cell cycle and in differentiated cells (3-5).Disintegration of nuclear DNA into nucleosome-sized fragments represents a classical manifestation of apoptosis (6). In addition, another type of DNA cleavage during apoptosis has been reported to yield a set of the high molecular weight (HMW) 1 DNA fragments of about 50 -100 kb (7). The formation of HMW DNA fragments is widely thought to result from the excision of DNA loop domains at the positions of their attachment to the nuclear matrix (8, 9) and is considered to be an initial...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.