In the Forex market, the price of the currencies increases and decreases rapidly based on many economic and political factors such as commercial balance, the growth index, the inflation rate, and the employment indicators. Having a good strategy to buy and sell can make a profit from the above changes. A successful strategy in Forex should take into consideration the relation between benefits and risks. In this work, we propose an intraweek foreign exchange speculation strategy for currency markets based on a combination of technical indicators. This system has a two-level decision and is composed of the Probit regression model and rules discovery using Random Forest. There are two minimum requirements for a trading strategy: a rule to enter the market and a rule to exit it. Our proposed system, to enter the currency market, should validate two conditions. First, it should validate Random Forest access rules over the following week while in the second one the predicted value of the next day using Probit should be positive. To exit the currency market just one negative warning from Probit or Random Forest is enough. This system was used to develop dynamic portfolio trading systems. The profitability of the model was examined for USD/(EUR, JYN, BRP) variation within the period from January 2014 to January 2016. The proposed system allows improving the prediction accuracy. This indicates a good prediction of the behavior market and it helps to identify the good times to enter it or to leave it.
Data stream mining (DSM) represents a promising process to forecast financial time series exchange rate. Financial historical data generate several types of cyclical patterns that evolve, grow, decrease, and end up dying. Within historical data, we can notice long-term, seasonal, and irregular trends. All these changes make traditional static machine learning models not relevant to those study cases. The statistically unstable evolution of financial market behavior yields a progressive deterioration in any trained static model. Those models do not provide the required characteristics to evolve continuously and sustain good forecasting performance as the data distribution changes. Online learning without DSM mechanisms can also miss sudden or quick changes. In this paper, we propose a possible DSM methodology, trying to cope with that instability by implementing an incremental and adaptive strategy. The proposed algorithm includes the online Stochastic Gradient Descent algorithm (SGD), whose weights are optimized using the Particle Swarm Optimization Metaheuristic (PSO) to identify repetitive chart patterns in the FOREX historical data by forecasting the EUR/USD pair’s future values. The data trend change is detected using a statistical technique that studies if the received time series instances are stationary or not. Therefore, the sliding window size is minimized as changes are detected and maximized as the distribution becomes more stable. Results, though preliminary, show that the model prediction is better using flexible sliding windows that adapt according to the detected distribution changes using stationarity compared to learning using a fixed window size that does not incorporate any techniques for detecting and responding to pattern shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.