Distinguishing sequences are widely used in finite state machine-based conformance testing to solve the state identification problem. In this paper, we address the scalability issue encountered while deriving distinguishing sequences from complete observable nondeterministic finite state machines by introducing a massively parallel MapReduce version of the well-known Exact Algorithm. To the best of our knowledge, this is the first study to tackle this task using the MapReduce approach. First, we give a concise overview of the well-known Exact Algorithm for deriving distinguishing sequences from nondeterministic finite state machines. Second, we propose a parallel algorithm for this problem using the MapReduce approach and analyze its communication cost using Afrati et al. model. Furthermore, we conduct a variety of intensive and comparative experiments on a wide range of finite state machine classes to demonstrate that our proposed solution is efficient and scalable.
This paper describes a fast algorithm for constructing directly the equation automaton from the well-known Thompson automaton associated with a regular expression. Allauzen and Mohri have presented a unified construction of small automata and gave a construction of the equation automaton with time and space complexity in O(mlogm+m2), where m denotes the number of Thompson automaton transitions. It is based on two classical automata operations, namely epsilon-removal and Hopcroft’s algorithm for deterministic Finite Automata (DFA) minimization. Using the notion of c-continuation, Ziadi et al. presented a fast computation of the equation automaton in O(m2) time complexity. In this paper, we design an output-sensitive algorithm combining advantages of the previous algorithms and show that its computational complexity can be reduced to O(m×|Q≡e|), where |Q≡e| denotes the number of states of the equation automaton, by an epsilon-removal and Bubenzer minimization algorithm of an Acyclic Deterministic Finite Automata (ADFA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.