The application of mulch films for preserving soil moisture and preventing weed growth has been a part of agricultural practice for decades. Different materials have been used as mulch films, but polyethylene plastic has been considered most effective due to its excellent mechanical strength, low cost and ability to act as a barrier for sunlight and water. However, its use carries a risk of plastic pollution and health hazards, hence new laws have been passed to replace it completely with other materials over the next few years. Research to find out about new biodegradable polymers for this purpose has gained impetus in the past few years, driven by regulations and the United Nations Organization’s Sustainable Development Goals. The primary requisite for these polymers is biodegradability under natural climatic conditions without the production of any toxic residual compounds. Therefore, biodegradable polymers developed from fossil fuels, microorganisms, animals and plants are viable options for using as mulching material. However, the solution is not as simple since each polymer has different mechanical properties and a compromise has to be made in terms of strength, cost and biodegradability of the polymer for its use as mulch film. This review discusses the history of mulching materials, the gradual evolution in the choice of materials, the process of biodegradation of mulch films, the regulations passed regarding material to be used, types of polymers that can be explored as potential mulch films and the future prospects in the area.
Brassica napus L. is a major oilseed crop all over the world. The aim of this study was to investigate the genetic diversity of B. napus germplasm by using simple sequence repeats (SSR) markers. In the current study, ten SSR markers were used for studying genetic diversity of ten Brassica cultivars. Out of 110 total bands, 68 bands were polymorphic with 52.11% average polymorphism. Mean value of Nei’s genetic diversity and Polymorphism Information Content was 1.7, and 0.2630, respectively. These mean values show that there are moderate allelic differences between Brassica cultivars. The Nei’s genetic distance among various cultivars was 0.3281 and 0.125 which showed that germplasm of Brassica cultivars are different from each other, which is probably due to anthropogenic interventions and environmental factors. Thus, genetically different lines identified in this study could be employed in breeding programmes to develop higher-quality canola inbred varieties in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.