Five heteroleptic ruthenium(II) polypyridyl complexes [Ru(FL1)(dcbpy)(NCS)] (1), [Ru(FL2)(dcbpy)(NCS)] (2), [Ru(FL3)(dcbpy)(NCS)] (3), [Ru(FL1)(dcbpy)(NCS)] (4), and [Ru(FL5)(dcbpy)(NCS)] (5) (where FL1 = aniline dithiocarbamate, FL2 = p-anisidine dithiocarbamate, FL3 = p-toluidine dithiocarbamate, FL4 = dibenzyl dithiocarbamate, and FL5 = diphenyl dithiocarbamate, dcbpy =2, 2 ′ -bipyridine-4,4 ′ -dicarboxylic acid, NCS = ammonium thiocyanate) have been synthesized and characterized with melting point, FTIR, UV-Vis, photoluminescence, and NMR (1H and 13C NMR) techniques, while the electrochemical activities of the complexes were studied using cyclic voltammetry. The FTIR of the heteroleptic complexes showed successful coordination of the ligands to ruthenium(II) ion, while the UV-Vis confirmed six coordinate octahedral geometry of the complexes, and the photoluminescence gave the photophysical properties with high intensities indicating potentials for dye sensitization. The electrochemical activities of the ruthenium(II) complexes showed redox potentials which could enhance the dye-sensitizing abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.