This paper develops a novel decentralized leader–follower consensus algorithm for multiple-quadcopter systems under uniform constant and asynchronous time-varying communication delays. The consensus problem is formulated as the stability analysis and static controller design problem of a delayed system by defining the consensus error dynamics. Lyapunov-based methods along with the linear matrix inequality (LMI) techniques are utilized to derive the sufficient conditions for the control gain design that ensure asymptotic consensusability in the constant delay case, and consensus with bounded errors in the time-varying delay case. Also the computational complexity of solving control gains can be significantly reduced by decomposing the sufficient conditions into a set of equivalent low-dimensional conditions under undirected communication topologies. Simulation results show that larger systems are generally more susceptible to communication delays, and systems are more robust to delays when more followers are directly connected to the leader.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.