Virtual synchronous generator (VSG) control lacks voltage inertia and powerful decoupling capabilities. The voltage of the distributed generator (DG) unit controlled by the VSG will be easily affected by power fluctuations and high-frequency noise, and the DG coupling usually makes the VSG control effect unsatisfactory. In order to effectively reduce power fluctuations, the influence of high-frequency noise on voltage, the influence of coupling on the power regulation, and effectively improve the economy of the economic system, the improved VSG control that combines voltage inertia and virtual impedance is proposed in this paper. The second-order inertia in the proposed VSG control strategy can minimize the voltage change rate and filter high-frequency noise from the excitation and virtual impedance. The virtual impedance in the proposed VSG control strategy can simulate the actual impedance to change the line characteristics, so the coupling of the DG unit can be reduced. Experimental results based on the microgrid platform prove the feasibility of improving the VSG control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.