In this study, micro‐nano rice husks (MNRH) fibers are compounded in polylactic acid (PLA) to produce 3D‐printed filaments by using melt blending method, and some properties of the printed samples of different surface treatment processes are measured. Two silane coupling agents of KH550 and KH570 are severally used on MNRH and PLA to mitigate the surface quality deficiencies for an intimate interfacial bond. Microstructural analysis shows that the MNRH fibers of the composites treated by silane coupling agent have a better dispersing performance. Fourier transform infrared illustrates that the KH550 and KH570 are successfully grafted onto PLA and MNRH fibers. Thermogravimetric analysis (TGA/DSC) suggests that the thermostability and crystallinity of the composites treated by silane coupling agents are enhanced. Water absorption experiments shows that the water resistance of the composites is greatly increased by KH550 and KH570. In comparison with pure PLA, the tensile strength, tensile modulus, bending strength and bending modulus of the 6 wt.% MNRH/PLA composites that treated by KH550 and KH570 are enhanced by 83%, 98%, 54%, and 61%, respectively. The composites treated by KH550 and KH570 demonstrates the best performance, suggesting that they have great potential for use as an environmentally friendly alternative material in automotive interiors.
The thermal decomposition process of 3D printed filament made from micro-nano rice husk (MNRH)/polylactic acid (PLA) blends was studied by dynamic thermogravimetric analysis. The characteristic temperatures and apparent activation energies of unmodified, single modified, and double modified RH/PLA composites were calculated by Friedman (FD), Flynn-Wall-Ozawa (FWO), Coats-Redfern (CR), and Kissinger (KS) kinetic models. With the modification of MNRH and PLA in the composites, the initial thermal decomposition temperature of the composite increased from 236.3°C to 244°C. At the same time, the thermal degradation degree decreased and the transition temperature interval increased. The apparent activation energy (AAE) values of different modified composites ranged from 90 to 120 kJ/mol, depending on the modification method and calculation method of the material. These four kinetic models provide methods to analyze the thermal stability of composites. It is helpful to known the thermal decomposition behavior of MNRH/PLA composites, and it will contribute to the development of MNRH/PLA filament for 3D printing in the application of automotive interior parts production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.