Chemical reaction prediction, involving forward synthesis and retrosynthesis prediction, is a fundamental problem in organic synthesis. A popular computational paradigm formulates synthesis prediction as a sequence-to-sequence translation problem, where the...
Retrosynthesis is the cornerstone of organic chemistry, providing chemists in material and drug manufacturing access to poorly available and brand-new molecules. Conventional rule-based or expert-based computer-aided synthesis has obvious limitations, such as high labor costs and limited search space. In recent years, dramatic breakthroughs driven by artificial intelligence have revolutionized retrosynthesis. Here we aim to present a comprehensive review of recent advances in AI-based retrosynthesis. For single-step and multi-step retrosynthesis both, we first list their goal and provide a thorough taxonomy of existing methods. Afterwards, we analyze these methods in terms of their mechanism and performance, and introduce popular evaluation metrics for them, in which we also provide a detailed comparison among representative methods on several public datasets. In the next part we introduce popular databases and established platforms for retrosynthesis. Finally, this review concludes with a discussion about promising research directions in this field.
“AI & Drug Discovery” mode has significantly promoted drug development and achieved excellent performance, especially with the rapid development of deep learning, making remarkable contributions to protecting human physiological health. However, due to the “black‐box” characteristic of the deep learning model, the decision route and predicted results in different research stages assisted by deep models are usually unexplainable, limiting their application in practice and more in‐depth research of drug discovery. Focusing on the drug molecules, an explainable fragment‐based molecular property attribution technique is proposed for analyzing the influence of particular molecule fragments on properties and the relationship between the molecular properties herein. Quantitative experiments on 42 benchmark property tasks demonstrate that 325 attribution fragments, which account for 90% of the overall attribution results obtained by the proposed method, have positive relevance to the corresponding property tasks. More impressively, most of the attribution results randomly selected are consistent with the existing mechanism explanations. The discovery mentioned above provides a reference standard for assisting researchers in developing more specific and practical drug molecule studies, such as synthesizing molecule with the targeted property using a fragment obtained from the attribution method. An interactive preprint version of the article can be found at: https://www.authorea.com/doi/full/10.22541/au.165279262.29589148.
“AI & Drug Discovery” mode has significantly promoted drug development and achieved excellent performance, especially with the rapid development of deep learning, making remarkable contributions to protecting human physiological health. However, due to the “black-box” characteristic of the deep learning model, the decision route and predicted results in different research stages assisted by deep models are usually unexplainable, limiting their application in practice and more in-depth research of drug discovery. Focusing on the drug molecules, we propose an explainable fragment-based molecular property attribution technique for analyzing the influence of particular molecule fragments on properties and the relationship between the molecular properties in this paper. Quantitative experiments on 42 benchmark property tasks demonstrate that 325 attribution fragments, which account for 90% of the overall attribution results obtained by the proposed method, have positive relevance to the corresponding property tasks. More impressively, most of the attribution results randomly selected are consistent with the existing mechanism explanations. The discovery mentioned above provides a reference standard for assisting researchers in developing more specific and practical drug molecule studies, such as synthesizing molecular with the targeted property using a fragment obtained from the attribution method. Corresponding author(s) Email: brooksong@zju.edu.cn
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.