Ischemic tissues require mechanisms to alert the immune system of impending cell damage. The nuclear protein high-mobility group box 1 (HMGB1) can activate inflammatory pathways when released from ischemic cells. We elucidate the mechanism by which HMGB1, one of the key alarm molecules released during liver ischemia/reperfusion (I/R), is mobilized in response to hypoxia. HMGB1 release from cultured hepatocytes was found to be an active process regulated by reactive oxygen species (ROS). Optimal production of ROS and subsequent HMGB1 release by hypoxic hepatocytes required intact Toll-like receptor (TLR) 4 signaling. To elucidate the downstream signaling pathways involved in hypoxia-induced HMGB1 release from hepatocytes, we examined the role of calcium signaling in this process. HMGB1 release induced by oxidative stress was markedly reduced by inhibition of calcium/calmodulin-dependent kinases (CaMKs), a family of proteins involved in a wide range of calcium-linked signaling events. In addition, CaMK inhibition substantially decreased liver damage after I/R and resulted in accumulation of HMGB1 in the cytoplasm of hepatocytes. Collectively, these results demonstrate that hypoxia-induced HMGB1 release by hepatocytes is an active, regulated process that occurs through a mechanism promoted by TLR4-dependent ROS production and downstream CaMK-mediated signaling.
Salt cress (Thellungiella halophila) is a small winter annual crucifer with a short life cycle. It has a small genome (about 2 3 Arabidopsis) with high sequence identity (average 92%) with Arabidopsis, and can be genetically transformed by the simple floral dip procedure. It is capable of copious seed production. Salt cress is an extremophile native to harsh environments and can reproduce after exposure to extreme salinity (500 mM NaCl) or cold to 215°C. It is a typical halophyte that accumulates NaCl at controlled rates and also dramatic levels of Pro (.150 mM) during exposure to high salinity. Stomata of salt cress are distributed on the leaf surface at higher density, but are less open than the stomata of Arabidopsis and respond to salt stress by closing more tightly. Leaves of salt cress are more succulent-like, have a second layer of palisade mesophyll cells, and are frequently shed during extreme salt stress. Roots of salt cress develop both an extra endodermis and cortex cell layer compared to Arabidopsis. Salt cress, although salt and cold tolerant, is not exceptionally tolerant of soil desiccation. We have isolated several ethyl methanesulfonate mutants of salt cress that have reduced salinity tolerance, which provide evidence that salt tolerance in this halophyte can be significantly affected by individual genetic loci. Analysis of salt cress expressed sequence tags provides evidence for the presence of paralogs, missing in the Arabidopsis genome, and for genes with abiotic stressrelevant functions. Hybridizations of salt cress RNA targets to an Arabidopsis whole-genome oligonucleotide array indicate that commonly stress-associated transcripts are expressed at a noticeably higher level in unstressed salt cress plants and are induced rapidly under stress. Efficient transformation of salt cress allows for simple gene exchange between Arabidopsis and salt cress. In addition, the generation of T-DNA-tagged mutant collections of salt cress, already in progress, will open the door to a new era of forward and reverse genetic studies of extremophile plant biology.Salinity is a severe and increasing constraint on the productivity of agricultural crops. High concentrations of salts in the soil have a strong inhibitory effect on the growth and harvestable yield of all crop species. Secondary salinization significantly impairs crop production on at least 20% of irrigated land worldwide (Ghassemi et al., 1995), and irrigated agriculture contributes more than 30% of global agricultural production (Hillel, 2000). Salinization of arable land arising from poor water management has led to the decline of past civilizations, and it threatens the long-term sustainability of many current large-scale irrigation systems, especially those in Asia (Sharma and Goyal, 2003). Soil salinity almost always originates from previous exposure to seawater (Flowers et al., 1986). Although it is believed that, for most of the Earth's history, the salt level of the oceans was much lower than at present (Serrano et al., 1997), all plant spec...
Inhibition of mTOR by rapamycin has been shown to suppress seizures in TSC/PTEN genetic models. Rapamycin, when applied immediately before or after a neurological insult, also prevents the development of spontaneous recurrent seizures (epileptogenesis) in an acquired model. In the present study, we examined the mTOR pathway in rats that had already developed chronic spontaneous seizures in a pilocarpine model. We found that mTOR is aberrantly activated in brain tissues from rats with chronic seizures. Furthermore, inhibition of mTOR by rapamycin treatment significantly reduces seizure activity. Finally, mTOR inhibition also significantly suppresses mossy fiber sprouting. Our findings suggest the possibility for a much broader window for intervention for some acquired epilepsies by targeting the mTOR pathway.
Apigenin is a nontoxic dietary flavonoid that has been shown to possess anti-tumor properties and therefore poses special interest for the development of a novel chemopreventive and/or chemotherapeutic agent for cancer. Ovarian cancer is one of the most common causes of cancer death among women. Here we demonstrate that apigenin inhibits expression of vascular endothelial growth factor (VEGF) in human ovarian cancer cells. VEGF plays an important role in tumor angiogenesis and growth. We found that apigenin inhibited VEGF expression at the transcriptional level through expression of hypoxia-inducible factor 1alpha (HIF-1alpha). Apigenin inhibited expression of HIF-1alpha and VEGF via the PI3K/AKT/p70S6K1 and HDM2/p53 pathways. Apigenin inhibited tube formation in vitro by endothelial cells. These findings reveal a novel role of apigenin in inhibiting HIF-1 and VEGF expression that is important for tumor angiogenesis and growth, identifying new signaling molecules that mediate this regulation.
SignificanceMimicking protein-like specific interactions and functions has been a long-pursued goal in nanotechnology. The key challenge is to precisely organize nonfunctional surface groups on nanoparticles into specific 3D conformations to function in a concerted and orchestrated manner. Here, we develop a method to graft the complementary-determining regions of natural antibodies onto nanoparticles and reconstruct their “active” conformation to create nanoparticle-based artificial antibodies that recognize the corresponding antigens. Our work demonstrates that it is possible to create functions on nanoparticles by conformational engineering, namely tuning flexible surface groups into specific conformations. Our straightforward strategy could be used further to create other artificial antibodies for various applications and provides a new tool to understand the structure and folding of natural proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.