The use of low-dose computed tomography (LDCT) in medical practice can effectively reduce the radiation risk of patients, but it may increase noise and artefacts, which can compromise diagnostic information. The methods based on deep learning can effectively improve image quality, but most of them use a training set of aligned image pairs, which are difficult to obtain in practice. In order to solve this problem, on the basis of the Wasserstein generative adversarial network (GAN) framework, we propose a generative adversarial network combining multi-perceptual loss and fidelity loss. Multi-perceptual loss uses the high-level semantic features of the image to achieve the purpose of noise suppression by minimizing the difference between the LDCT image and the normal-dose computed tomography (NDCT) image in the feature space. In addition, L2 loss is used to calculate the loss between the generated image and the original image to constrain the difference between the denoised image and the original image, so as to ensure that the image generated by the network using the unpaired images is not distorted. Experiments show that the proposed method performs comparably to the current deep learning methods which utilize paired image for image denoising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.