Background: Mesenchymal stem cells (MSCs) can improve limb perfusion and increase vessel density in a murine model of hindlimb ischemia. But low engraftment rate of those cells limited their therapeutic effect. Endothelial cells (ECs) play an important role in neovascularization. And MSCs can differentiate into ECs in vitro. The aim of this study is to investigate if EC differentiation of MSCs in vitro before transplantation is effective in improving therapeutic outcomes in the treatment of ischemic disease in a murine ischemia animal model. Methods: MSCs were isolated from the bone marrow of EGFP-transgenic mice by density gradient centrifugation. The identity of the MSCs was determined by their cluster of differentiation (CD) marker profile by flow cytometry. Inducing medium containing a few cytokines was applied to induce the MSCs to differentiate into ECs. Endothelial differentiation was quantitatively evaluated using flow cytometry, quantitative real-time PCR (qRT-PCR), immunofluorescence, Matrigel tube formation assay, and Dil-labeled acetylated low-density lipoprotein uptake assay. Mouse hindlimb ischemia model was made by excision of the femoral artery. Uninduced EGFP+ MSCs, induced EGFP+ MSCs, and PBS were intramuscularly injected into the gastrocnemius following ischemia no later than 24 h after operation. Restoration of blood flow and muscle function was evaluated by laser Doppler perfusion imaging. Immunofluorescence was conducted to evaluate the engraftment of transplanted MSCs. Histological analysis was performed to evaluate blood vessel formation. Results: Induced EGFP+ MSCs expressed endothelial markers and exhibited tube formation capacity. Mice in the induced EGFP+ MSCs group had a better blood perfusion recovery, enhanced vessel densities, higher engraftment, and improved function of the ischemic limb than those in the uninduced EGFP+ MSCs or PBS groups.
BackgroundCrohn’s disease (CD) and peripheral arterial disease (PAD) are closely related. The pathophysiological mechanisms underlying the coexistence of CD and PAD are unknown. The aim of this study was to investigate the key molecules and pathways mediating the co-occurrence of CD and PAD through quantitative bioinformatic analysis of a public RNA sequencing database.MethodsDatasets of CD (GSE111889) and PAD (GSE120642) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were analyzed using the ‘edgeR’ and ‘limma’ packages of R. Gene Ontology and Kyoto Encyclopedia analyses of common DEGs were performed to explore the functions of DEGs. Protein–protein interaction (PPI) networks were established by the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape. Hub genes were selected using the plugin cytoHubba. Hub gene validation was performed in GSE95095 for CD and GSE134431 for PAD. Receiver operating characteristic curves were used to evaluate the predictive values of the hub genes. Gene set enrichment analysis and immune infiltration of the hub genes were performed.ResultsA total of 54 common DEGs (2 downregulated and 52 upregulated) were identified. Pathways of neutrophil chemotaxis, neutrophil migration and cytokine and cytokine receptors were enriched in CD and PAD. S100A8, S100A9, S100A12 and CXCR2 were identified as hub genes after validation, with all area under the curve > 0.7 for both CD and PAD. Neutrophil infiltration was associated with upregulation of the hub genes. Pathways of immune processes, including neutrophil activation, neutrophil chemotaxis, neutrophil migration were significantly correlated with high expression of S100A8, S100A9, S100A12 and CXCR2 in both CD and PAD.ConclusionsThis bioinformatic study elucidates S100A8, S100A9, S100A12 and CXCR2 as hub genes for the co-occurrence of Crohn’s disease and peripheral artery disease. Inflammation and immune regulation modulated by neutrophil infiltration play a central role in the development of CD and PAD and may be potential targets for diagnosis and treatment.
The anti-inflammatory effects of glycyrrhizic acid (GA) against asthma have previously been reported; however, the underlying molecular mechanism of GA in asthma has not yet been elucidated. Thus, the present study aimed to determine the function and potential molecular mechanism of GA for modulating the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway in asthma-associated airway inflammation and remodeling. In order to study the mechanism of GA on airway inflammation and airway remodeling in asthmatic mice, a mouse model of chronic asthma was constructed. A total of 50 female mice were randomly assigned into five groups (10 mice/group), as follows: Blank group, asthma group, GA group, dexamethasone group and GA + TGF-β1 group. Hematoxylin and eosin, and Masson staining were performed to assess the airway inflammation and remodeling in mice with ovalbumin (OVA)-induced asthma. The serum levels of interleukin (IL)-4, IL-5, IL-13 and IL-17 in mice were assessed via the enzyme-linked immunosorbent assay. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the levels of TGF-β1 and Smads in lung tissues of each group of mice. The results demonstrated that GA and dexamethasone treatment mitigated airway inflammation, inflammatory cell infiltration and airway remolding, with a concomitant decrease in the expression levels of IL-4, IL-5, IL-13 and IL-17, in mice with OVA-induced asthma. In addition, the levels of TGF-β1 and Smad2 notably decreased, while Smad7 expression increased in the GA and dexamethasone groups compared with the asthma group. Furthermore, histopathological morphometry exhibited significantly elevated inflammatory cell infiltration, airway wall and smooth muscle, collagen secretion and inflammatory cytokines in the serum of mice in the GA + TGF-β1 group compared with the GA group. Taken together, the results of the present study suggest that GA ameliorates airway inflammation and remodeling via the TGF-β1/Smad signaling pathway in mice with asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.