This work was aimed to establish a feature model for glioma grading and early metastasis and recurrence risk prediction based on contrast-enhanced magnetic resonance imaging (MRI). A total of 145 patients diagnosed with glioma by pathological examination were selected as the research subjects (training cohort: nasty 80; validation cohort: nasty 65). The imaging parameters T1-weighted (CET1WI), axial T2-weighted (T2WI), and apparent diffusion coefficient (ADC) were selected for the extraction of size and shape, intensity, histogram, and texture features. Image dimensionality reduction, feature selection, and model building were performed using the LASSO regression method. Using imaging features as potential predictors and evaluation indicators, the accuracy, sensitivity, and specificity of all prediction models and the area under the curve (AUC) of the receiver operating characteristic curve were calculated. Moreover, a predictive model for glioma grading and early metastasis risk was constructed. The results showed that under a single imaging parameter (T1-CE, DDC, T2WI-FLAIR, ADCslow, Alpha, ADC, CBF, and ADCfast), the diagnostic accuracy, sensitivity, specificity, AUC, and 95% confidence interval (CI) of low-grade gliomas (LGG), high-grade gliomas (HGG), and recurrent and nonrecurrent gliomas were significantly different (P < 0.05). The texture features, histogram features, and mean AUC of distinguishing low-grade and high-grade gliomas were 0.958, 0.945, and 0.954, respectively. The texture features, histogram features, and mean AUC for distinguishing recurrent and nonrecurrent gliomas were 0.949, 0.876, and 0.900, respectively. In short, the use of enhanced MRI imaging features can realize the prediction of early grading and recurrence of glioma and is of great significance for the early classification of benign and malignant characteristics of tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.