Recently, a de novo synthetic calcium-responsive self-assembly β-sheet peptide ID8 (Ile-Asp-Ile-Asp-Ile-Asp-Ile-Asp) has been developed to serve as the template inducing hydroxyapatite nucleation. The aim of this study was to evaluate the effect of ID8 on intrafibrillar mineralization of collagen making full use of its self-assembly ability. The mineralization experiments were carried out in vitro on both bare type I collagen and fully demineralized dentin samples. The calcium-responsive self-assembly of ID8 was revealed by circular dichroism spectrum, 8-anilino-1-naphthalenesulfonic acid ammonium salt hydrate assay, attenuated total reflection Fourier transform infrared spectrum (ATR-FTIR) and transmission electron microscope (TEM). Polyacrylic acid (450 kDa) with a concentration of 100 mg/L was selected as the nucleation inhibitor based on the determination of turbidimetry and TEM with selected area electron diffraction (TEM-SAED). The results showed that collagen intrafibrillar mineralization was significantly promoted with the pretreatment of self-assembly ID8 detected by TEM-SAED, SEM, X-ray diffraction and ATR-FTIR. The pretreatment of collagen utilizing self-assembly ID8 not only enhanced intermolecular hydrogen bonding, but contributed to calcium retention inside collagen and significantly increased the hydrophilicity of collagen. These results indicated that peptides with self-assembly properties like ID8 are expected to be potential tools for biomimetic mineralization of collagen.
The oral and maxillofacial hard tissues support the maxillofacial shape and serve as the foundation for functional activities. Defects in these tissues not only impair patients’ ability to perform their normal physiological functions but also have a significant negative impact on their psychological well-being. Moreover, these tissues have a limited capacity for self-healing, necessitating the use of artificial materials to repair defects. Calcium phosphate is a fine-grained inorganic biomineral found in vertebrate teeth and bones that has a comparable composition to human hard tissues. Calcium phosphate materials are biocompatible, bioactive, and osteogenic for hard tissue repair, despite drawbacks such as poor mechanical qualities, limiting their clinical efficacy and application. With the advancement of materials science and technology, numerous techniques have been developed to enhance the characteristics of calcium phosphate, and one of them is functionalization. Calcium phosphate can be functionally modified by changing its size, morphology, or composition through various preparation processes to achieve multifunctionality and improve physical and chemical properties, biocompatibility, and osteogenic potential. The purpose of this review is to provide new ideas for the treatment of oralmaxillofacial hard tissue defects and deficiencies by summarizing the functionalization strategies of calcium phosphate materials and their applications in dentistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.