Due to the outbreak of the COVID-19, online diagnosis and treatment services have developed rapidly, but it is not easy for patients to choose the appropriate healthcare service in the face of massive amounts of information. This article proposes a multi-dimensional context-aware healthcare service recommendation method, which consists of a healthcare service matching model and a healthcare service ranking model. The former first collects objective knowledge related to doctors and diseases to build a knowledge graph, then matches a group of healthcare services for patients according to the patient’s input; The latter selects 5 indicators from the doctor’s academic level, geographical location, public influence, reputation, etc. to build a TOPSIS model based on the entropy weight method to recommend the most appropriate healthcare services for patients. Finally, taking the patient in Shiyan as an example, the whole process of the method is demonstrated, and the feasibility of the method is verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.