In this study we observed that mice pretreated with tumor exosomes had a significant acceleration of tumor metastasis in the lung. Tumor metastasis correlated significantly with an increase in recruitment of more Myeloid-derived suppressor cells (MDSCs) in the lung of C57BL/6j (B6) mice pretreated with tumor exosomes. These effects were blunted when MyD88 knockout (KO) mice were pretreated with tumor exosomes. MDSCs induced by tumor exosomes and isolated from wild-type B6 mice also more potently inhibited T cell activation and induction of interleukin-6 and tumor necrosis factor-alpha than MDSCs isolated from the lung of MyD88 KO mice. In vitro, addition of tumor exosomes to bone marrow-derived CD11b(+)Gr-1(+) cells isolated from wild-type B6 mice resulted in more cytokine production, including tumor necrosis factor-alpha, interleukin-6, and the chemokine CCL2, than CD11b(+)Gr-1(+) cells isolated from MyD88 KO mice. Moreover, lower levels of CCL2 were observed in the lungs in MyD88 KO mice pretreated with tumor exosomes than that in wild-type mice. Together these data demonstrate a pivotal role for MyD88 in tumor exosome-mediated expansion of MDSCs and tumor metastasis.
Exosomes released from different types of cells have been proposed to contribute to intercellular communication. We report that thymic exosome-like particles (ELPs) released from cells of the thymus can induce the development of Foxp3+ regulatory T (Treg) cells in the lung and liver. Thymic ELPs also induce the conversion of thymic CD4+CD25− T cells into Tregs. Tregs induced by thymic ELPs suppress the proliferation of CD4+CD25− T cells in vitro and in vivo. We further show that neutralization of TGF-β in ELPs partially reverses thymic ELP-mediated induction of CD4+Foxp3+ T cells in the lung and liver. This study demonstrates that thymic ELPs participate in the induction of Foxp3+ Tregs. Also, TGF-β of thymic ELPs might be required for the generation of Tregs in the peripheral tissues.
Recent reports suggest that an increasing number of patients with lung cancer, especially those with activating mutations of the epidermal growth factor receptor (EGFR), also present with brain metastases and leptomeningeal metastases. These patients have poor prognosis as there are no approved drugs for these indications. Available agents have poor efficacy for these patients even at well above their standard dose. Herein, we report the discovery of (4-[(3-chloro-2-fluorophenyl)amino]-7-methoxyquinazolin-6-yl (2R)-2,4-dimethylpiperazine-1-carboxylate 1m (AZD3759), an investigational drug currently in Phase 1 clinical trial, which has excellent central nervous system penetration and which induces profound regression of brain metastases in a mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.