The aging of mammals is accompanied by the progressive atrophy of tissues and organs and the accumulation of random damage to macromolecular DNA, protein, and lipids. Flavonoids have excellent antioxidant, anti-inflammatory, and neuroprotective effects. Recent studies have shown that flavonoids can delay aging and prolong a healthy lifespan by eliminating senescent cells, inhibiting senescence-related secretion phenotypes (SASPs), and maintaining metabolic homeostasis. However, only a few systematic studies have described flavonoids in clinical treatment for anti-aging, which needs to be explored further. This review first highlights the association between aging and macromolecular damage. Then, we discuss advances in the role of flavonoid molecules in prolonging the health span and lifespan of organisms. This study may provide crucial information for drug design and developmental and clinical applications based on flavonoids.
Drugs or compounds have been shown to promote longevity in various approaches. We used
Drosophila
to explore novel natural compounds can be applied to anti-aging. Here we reported that a flavonoid named Dihydromyricetin can increase stress that tolerance and lipid levels, slow down gut dysfunction and extend
Drosophila
lifespan. Dihydromyricetin can also lessen pERK and pAKT signaling, consequently activating FOXO and AOP to modulate longevity. Our results suggested that DHM could be used as an effective compound for anti-aging intervention, which could likely be applied to both mammals and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.